TION 9TR X
Approved fsu public release)
. Diswibution Unlmited

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

o
oo I

Wright-Patterson Air Force Base, Ohic

89 4 03 044




() AFIT/GA/AA/88M-1

DTIC_

ELECT
APR 0 41983

A NUMERICAL INVESTIGATION OF THIN-FILM
HEAT TRANSFER GAGES

THESIS

Joseph Anthony Bonafede
First Lieutenant, USAF

AFIT/GA/AA/88M-1

Approved for public release; distribution unlimited




() AFIT/GA/AA /88M-1

A NUMERICAL INVESTIGATION OF THIN-FILM
HEAT TRANSFER GAGES

THESIS

Presented to the Faculty of the School of Engineering

of the Air Force Institute of Technology

DTic: N\

Air University
‘ In Partial Fulfillment of the

cory

R

Requirements for the Degree of

Master of Science in Astronautical Engineering and Space Facilitics

Accesion For

NTIS CRAS
DTiIC TAB
Unanuounced

Joseph Anthony Bonafede, B.S.

First Lieutenant, USAF Justtica RO e
By
Oistribution

b —— e e - -

March, 1988 Avalatety odes

i Avld giafer
Specal

Dist

A1l

Approved for public release; distribution unlimited




Acknowledgments

When faced with the undertaking and completion of this thesis, I was not alone,
so | would like to thank those who stood by me in this task. First and formost is
my advisor, Dr. Jim Hitchcock, who made the hard things seem easy and never gave
up on me. Special thanks go to my sister, Jean, who helped tremendously with
the figures and graphs. Special thanks also go to my brother, Greg, who proofread
the document twice and has helped me in many other ways. Additionally, I thank
Jeff Tustin for proofreading the document and being earuestly ready to help in any

way possible.

I would also like to thank Chris Reid and Tom Passin for setting me up on PC
TEX and Werner Willmann for supporting me at Lincoln Laboratory with printouts.
Thanks to Laine Sellers and Paula Hagan for giving their time to help me with the
printouts. Thanks also to Javier Gonzalez, Chris Mayer, Roger Claypoole and the
brothers at M.I.T.’s ZBT for helping with IATEX.

Often times, the most important help is moral support. I would like to thank
the many friends and family who prayed often on my behalf and helped me in this
way. Thanks to my family; Mom, Dad, John, Debbie, Jean, Greg, Mike and Blake.
Knowing you are behind me has made all the difference. Special thanks to Jim and
Mary Mayhew, who always had time to help, and to Maura Marler and Mike Ward.
Thanks also to Jeff Grimshaw, who first helped with IATEX. I would also like to thank
the many friends from Patterson Park Church and the Officer’s Christian Fellowship,
especially Chris Hess, Dave Reske, Ryan Dunn, Janet Kinser, Robin Hunt and Peggy
Nystrom, and thanks to Kim Franzoni, who has helped me since my move to Boston.
Above all, I want to thank the Lord, who has taught me many more things beyond

heat transfer through this time.

Joseph Anthony Bonafede

i




Table of Contents

Acknowledgments . . . . ... ... ... .. ... ... ...
Tableof Contents . . . . ... ... . ... . . .. e
Listof Figures . . .. . . . . . . . . . i i
Listof Tables . . . . . . . . . . . . e
Listof Symbols . . . . . .. ... . . e
Abstract . . . . . . ..
L. Introduction . . . . . .. .. ... e
1.1 Background and Motivation . . . . ... ... .. ... ..

1.2 Purpose . . . . .. . ...

1.3 Approach . . ... .. ... ... ... .

II. The Finite-Difference Model . . . . ... ... ... .........
2.1 The Differential Equations . . . ... .. .........

2.1.1 Front Surface Boundary Condition . . . . . . ..

2.1.2 Back Surface Boundary Condition . .. ... ..

2.1.3 Inner-Radial Boundary Condition . . . ... ..

2.1.4 Outer-Radial Boundary Condition . . ... ...

2.2 Non-Dimensional Parameters . . . . .. . ... ... ...

2.3 The Finite-Difference Equations . . ... .. . ... ..

2.3.1 Discretizing the Model . . . . . . . ... ... ..

2.3.2 Nodal Equations

i1

..................

Page
il

i
vii
xiii
xiv

xvii




——f

Page
2.3.3 Boundary Conditions . . ... .......... 29
2.3.4 The Boundary Between Materials . .. ... .. 31
2.3.5 Non-Dimensional Nodal Equations . . . ... .. 34
2.3.6 Stability Criterion . . . . ... .......... 35
2.3.7 Convergence Criterion for the Preheating Problem 38
2.4 The One-Dimensional Series Solution . . ....... .. 40
2.5 Comparing the Series Solution Estimate with the
Simulated Surface Heat Flux . . .. ... ... ... ... 42
III. CheckCases . ...... ... ... ... 44
3.1 One-Dimensional, Steady-State Heat Transfer in the
Axial Direction . . . . .. . ... ... ... 45
3.2 One-Dimensional, Steady-State Heat Transfer in the
Radial Direction . . . ... ... ... ... .. ...... 51
3.3 One-Dimensional, Transient Heat Transfer in the
Axial Direction . . . . .. . ... ... oL, 60
3.3.1 The Semi-Infinite Solid with Convection . . . . . 61
3.3.2 The Semi-Infinite Solid with Constant Surface
Heat Flux . . . .. ... ... .. ... ...... 61
3.3.3 The Plane Wall with Convection . ... ... .. 65
3.3.4 Results from the Transient Check Cases . . . . . 67
IV. Analysisand Results . . ... ... . ... .. .. ... ...... 79
4.1 AdiabaticCases . . .. ................... 81
4.2 Non-Adiabatic Cases with No Heat Generation or
Preheating . . ... ... ... .. ... ... ... 85
4.3 Non-Adiabatic Cases with Heat Generation and
Preheating . . .. .. ... .. ... ... ... ... 103
V. Conclusions and Recommendations . . . .. ... ... ....... 109
iv




Appendix A.
Al

A2

Appendix B.
B.1

Appendix C.
C.1
C.2

C.3

Appendix D.
D.1

Nodal Equations . . .. ... ...............
Single-Material Problem with Fully-Insulated, Outer-
Radial Boundary Condition . . . . ... .. ........
Two-Material Problem with Fully-Insulated, Quter-
Radial Boundary Condition . . . . ... .. ........
Graphs of Results from the Check Cases . ... ... ..

Steady-State Check Cases for Heat Transfer in the
Axial Direction . . . . .. ... ... ... ... .....

B.1.1 Preheating Problems . . . . ... ... ......
B.1.2 Disturbance Problems . . . ... ... ... ...

Steady-State Check Cases for Heat Transfer in the
Radial Direction . . ... .. ... .. ... ........

B.2.1 Single-Material Problems . . ... ... ... ..

B.2.2 Two-Material Problems . . ... ... ......

Transient Check Cases . . . . . . . ... ... .. .....
B.3.1 The Semi-Infinite Solid with Constant Surface
Heat Flux . . . . ... . ... ... ... .....

Other Graphsof Results . . . . ... .. ... ......
Results for the Adiabatic Cases Using 8 =100.0 .. . ..
Results for the Non-Adiabatic Cases with No Heat

Generation or Preheating Using 4Bt v, =1.0. . . . ..

Results for the Non-Adiabatic Cases with Heat Generation
and Preheating Using 4 =100.0 . . ... ... ......

Example Programs . . . .. ... ... ... ... ....

The Finite-Difference Model for the Single-Material
Problem with Fully-Insulated, Outer-Radial
Boundary Condition . . . ... ... ... .........

131

131
131
134

140
140
144
149

149
133

159
159

164

173

178




Page
. D.2 The Finite-Difference Model for the Two-Material Problem
with Fully-Insulated, Outer-Radial Boundary Condition . 192

D.3 Code to Compare the Finite-Difference and the Series

Solution Estimates for Surface Heat Flux . . ... .. .. 210

Bibliography . . . . .. ... . . .. oo 216

VIt o o e e e e e e e e e e e 217
vi




Figure

o

© 0 N ook W

10.

11.

13.
14.

15.

16.
17.

List of Figures

Diagram of a Thin-Film Gage . ... ... ..............
Simplified, Two-Dimensional Geometry . . . ... ... .. .. ...
Energy Balance Across the Thin-Film Sensor . . . . . .. ... ...
Discretized Geometry of the Single-Material Problem . .. ... ..
Discretized Geometry of the Two-Material Problem . . .. ... ..
Nodal Geometry for an Interior Node in the Cylinder . . . .. .. .
Nodal Geometry for a Node on the Boundary Between Materials . .
Convergence Criterion . . . . . ... ... .. ... ... .......

Sample Resnlt for Steady State Heat Transfer in the Axial Direction
Using the Preheating Problem . . .. .. ... ... ... ......

Sample Result for Steady State Heat Transfer in the Axial Direction
Using the Disturbance Problem . . . . . . .. ... ... .......

Sample Result for Steady State Heat Transfer in the Axial Direction
Using the Preheating Problem with Different Values for the

Tolerance . . . . . . v . e e e e e e e e

Sample Result for Steady State Heat Transfer in the Axial Direction
Using the Disturbance Problem with Different Values for the

Tolerance . . . . . . . . . . . ..
Sample Result for Steady State Heat Transfer in the Radial Direction

Sample Result for Steady State Heat Transfer in the Radial Direction
with Different Values for the Tolerance . . . . . . . . ... ... ...

Simulating a Semi-Infinite Solid with Constant External Fluid

Temperature and Convection Coefficient . . . . . .. ... ... ...
Simulating a Semi-Infinite Solid with Constant Surface Heat Flux

Simulating the Plane Wall with Constant External Fluid

Temperature and Convection Coefficient on Both Sides . . . . . ..

vii

49

50

53
58

59

64

66




18.

19.

29.

30.

Finite-Difference Model Values for 8} vs. t* for the Semi-Infinite Solid

with Convection . . . . . . .. . . . . .. ..

Finite-Difference Estimates for ¢} vs. t* for the Semi-Infinite Solid

with Convection . . . . . . .. . . . . . . .. . ...

Series Solution Estimates for ¢} (Using Analytical Values for 6})
vs. t* for the Semi-Infinite Solid with Convection . . . . . . . . ...

Series Solution Estimates for ¢} (Using the Finite-Difference Model
Values for 8}) vs. t* for the Semi-Infinite Solid with Convection

Comparing the Finite-Difference Estimates, Series Solution Estimates
(Using the Finite-Difference Model Values for 67) and Analytical
Values for g} vs. t* for the Semi-Infinite Solid with Convection . . .

Results with Heat Generation and Preheating as v Varies
Using =100 . . . ... ... ..

Results with Heat Generation and Preheating as the Tolerance Varies

Using 8=100 . .. ... ... . ...

Results with Heat Generation and Preheating as L/R_,., Varies
Using 3=10.0 . . . ... ... e

Results with Heat Generation and Preheating as R,,.,./R,, Varies
Using 3=100 . ... ... . ... .

Results for the Limiting Case for Heat Flux Out Across the Quter-
Radial Boundary with No Heat Generation as L/R,,, Varies

Using ¢Btpponr =-1 « - v o o o o

Results for the Intermediate Case for Heat Flux Out Across the
Outer-Radial Boundary with No Heat Generation as L/R_,, Varies

Using ¢Bipponr =1 - o o o o o o o

Results for the Limiting Case for Heat Flux In Across the Outer-
Radial Boundary with No Heat Generation as L/R_,., Varies

Using aBipgonr =1 - o o o o i i o o

Results for the Intermediate Case for Heat Flux In Across the Outer-
Radial Boundary with No Heat Generation as L/R_,, Varies

Using 4Bipponr =-1 - o o o o oo oo

Page

84

86

87

90

91

92




Figure Page
. 31. Typical Flux Plot for Heat Transfer in an Initially Isothermal, Semi-
Infinite Solid . . . . . ... . ... ... ... 96

32. Typical Flux Plots for Heat Transfer in the Intermediate Cases for
Heat Flux Out and In Across the Quter-Radial Boundary of the

Cylinder . . . .. . . ... . . 97
33. Results for the Limiting Case for Heat Flux Out Across the Outer-

Radial Boundary with Mo Heat Generation as R, /R.,, Varies

Using aBipgoner =-1 . . . . o 0 oL o 99

34. Results for the Intermediate Case for Heat Flux Out Across the
Outer-Radial Boundary with No Heat Generation as R, .,/ R.,,
Varies Using ¢B1

FRONT ©

35. Results for the Limiting Case for Heat Flux In Across the Outer-
Radial Boundary with No Heat Generation as R, /R.,, Varies
Using 4Bt ponr =-1 - 0 o o o 101

36. Results for the Intermediate Case for Heat Flux In Across the Outer-
Radial Boundary with No Heat Generation as R, .. /R.,, Varies

. Using aBtoponr =-1 - 0 o o o 0 0o oo 102

37. Results for the Limiting Case for Heat Flux Out Across the Outer-
Radial Boundary with Heat Generation and Preheating

Using 3=10.0 . .. .. ... .. .. .. ... 105

33. Results for the Intermediate Case for Heat Flux Qut Across the
Quter-Radial Boundary with Heat Generation and Preheating
Using 3=10.0 . . . ... ... ... . ... 106

39. Results for the Limiting Case for Heat Flux In Across the Outer-

Radial Boundary with Heat Generation and Preheating
Using 3=10.0 . . . ... ... ... . . ... 107

40. Results for the Intermediate Case for Heat Flux In Across the Outer-
Radial Boundary with Heat Generation and Preheating

Using 8=100 . .. .. ... .. . .. ... ... 108
41. Other Results for Steady State Heat Transfer in the Axial Direction
Using the Preheating Problem, Figure (a) . . . . ... ... .. ... 132
1X




Figure
42.

43.

44.

45.

46.

47.

48.

49.

50.

ol.

93.

54.

53.

Page
Other Results for Steady State Heat Transfer in the Axial Direction
Using the Preheating Problem, Figure (b) . . . . ... ... ... . . 133
Other Results for Steady State Heat Transfer in the Axial Direction
Using the Disturbance Problem, Figure (a) . .. ... ... .. ... 135
Other Results for Steady State Heat Transfer in the Axial Direction
Using the Disturbance Problem, Figure (b) . . ... .. .... ... 136
Other Results for Steady State Heat Transfer in the Axial Direction
Using the Disturbance Problem, Figure (¢) . .. .. ... ... ... 137
Other Results for Steady State Heat Transfer in the Axial Direction
Using the Disturbance Problem, Figure (d) . .. ... ... ... .. 138
Other Results for Steady State Heat Transfer in the Axial Direction
Using the Disturbance Problem, Figure (e} . . ... ... ...... 139
Case 1 for Steady State Heat Transfer in the Radial Direction
Using the Single-Material Problem . . . . ... ... .. ....... 141
Case 3 for Steady State Heat Transfer in the Radial Direction
Using the Single-Material Problem . . . . .. . ... .. ....... 142
Case 4 for Steady State Heat Transfer in the Radial Directio.
Using the Single-Material Problem . . . . .. . ... ... ... ... 143
Case 1 for Steady State Heat Transfer in the Radial Direction
Using the Two-Material Problem . . . . . ... ... .. ... .... 145
Case 2 for Steady State Heat Transfer in the Radial Direction
Using the Two-Material Problem . . . . . . .. ... ... ...... 146
Case 3 for Steady State Heat Transfer in the Radial Direction
Using the Two-Material Problem . . . . . .. . ... ... ... ... 147
Case 4 for Steady State Heat Transfer in the Radial Direction
Using the Two-Material Problem . . . . .. ... ... ... .. ... 148
Finite-Difference Model Values for 8} vs. t* for the Semi-Infinite Solid
with Constant Surface Heat Flux . . . . . .. ... ... .. ... .. 150

Series Solution Estimates for ¢} (Using Analytical Values for })
vs. tt for the Semi-Infinite Solid with Constant Surface Heat Flux . 151




Figure
57.

58.

59.

60.

61.

63.

64.

65.

66.

68.

69.

Page
Series Solution Estimates for ¢} (Using the Finite-Difference Model
Values for 8}) vs. t* for the Semi-Infinite Solid with Constant Surface
Heat Flux . . . ... ... ... ... ... . .. ... .. ... 152
Finite-Difference Model Values for 8} vs. t* for the Plane Wall
with Convection . . . ... ... ... ... ... . ... .. .. ... 154
Finite-Difference Estimates for g} vs. t* for the Plane Wall
with Convection . . .. . ... .. ... ... .. ... .. ... 155
Series Solution Estimates for ¢} (Using Analytical Values for 67)
vs. t¥ for the Plane Wall with Convection . . . . .. ... ... ... 156
Series Solution Estimates for ¢} (Using the Finite-Difference Model
Values for §F) vs. t* for the Plane Wall with Convection. . . . . . . 157
Comparing the Finite-Difference Estimates, Series Solution Estimates
(Using the Finite-Difference Model Values for ) and Analytical
Values for ¢} vs. t* for the Plane Wall with Convection . . . . . .. 158
Results with Heat Generation and Preheating as v Varies
Using 8=100.0 . . oo ooi i 160
Results with Heat Generation and Preheating as the Tolerance Varies
Using 3=100.0 . ... ...... ... .. ... ... .. ..., 161
Results with Heat Generation and Preheating as L/R_.,,, Varies
Using =100.0 . ... ... .. ... ... ... .. 162
Results with Heat Generation and Preheating as R, .,./R_,, Varies
Using 3=100.0 . ... ... ... . ... . ... .. 163
Results for the Limiting Case for Heat Flux Out Across the Outer-
Radial Boundary with No Heat Generation as L/R_,, Varies
Using ¢Bipponr = 1.0 . . o o o oo oo 165
Results for the Intermediate Case for Heat Flux Out Across the
Outer-Radial Boundary with No Heat Generation as L/R_,., Varies
Using 4Bt oponr =10 . . o o oo oo oo 166

Results for the Limiting Case for Heat Flux In Across the Outer-

Radial Boundary with No Heat Generation as L/R..,, Varies

Using gBtoponr =1.0 « o 0 000000 167




Figure
70.

71.

73.

74.

75.

76.

77.

78.

Page
Results for the Intermediate Case for Heat Flux In Across the Outer-
Radial Boundary with No Heat Generation as L/R_,, Varies

Using 4Bipponr =10 . . o oo oo o 168
Results for the Limiting Case for Heat Flux Qut Across the Quter-
Radial Boundary with No Heat Generation as R,,,,/R.,, Varies
Using 4Bt pony =10 . . o o o oo 169

Results for the Intermediate Case for Heat Flux Qut Across the
Outer-Radial Boundary with No Heat Generation as R, /R

cYL
Varies Using ¢Btoponr =10 . . . o oo oo oo 170
Results for the Limiting Case for Heat Flux In Across the Outer-
Radial Boundary with No Heat Generation as R, /R.,, Varies
Using 4Bigone =10 « . o o o oo 171

Results for the Intermediate Case for Heat Flux In Across the Quter-
Radial Boundary with No Heat Generation as R,,,,./R.,, Varies
Using aBipgonr = 1.0 . o o o 0 oo oo 172

Results for the Limiting Case for Heat Flux Out Across the Outer-
Radial Boundary with Heat Generation and Preheating
Using 3=1000 . ... .. ... ... .. ... 174

Results for the Intermediate Case for Heat Flux Out Across the
Outer-Radial Boundary with Heat Generation and Preheating
Using 3=1000 . ... ... ... . . ... ... .. 175

Results for the Limiting Case for Heat Flux In Across the Outer-
Radial Boundary with Heat Generation and Preheating
Using 3=100.0 . ... ... ... .. ... 176

Results for the Intermediate Case for Heat Flux In Across the Outer-
Radial Boundary with Heat Generation and Preheating
Using 8= 1000 . . . o oo i 177

xii




Table

List of Tables
Page
Summary of Non-Dimensional Terms in the Electrical Analogy . . . 48

Boundary Conditions and Analytical Solutions for Steady-State Heat
Transfer in the Radial Direction . . . ... ... ........... 56

Analytical Solutions used in the Steady-State Check Cases for Heat
Transfer in the Radial Direction . .. ... ... ... ........ 57

xiii




List of Symbols

[Area)

non-dimensional Biot number, 2k

k

constant used in the plane wall solution

specific heat at constant pressure, {Energy]/[Mass|{Degree]
heat energy, [Energy]/[Time]

coefficient of convective heat transfer, [Energy]/[Area][Time][Degree]
refers to a specific time index value

index variable for time

thermal conductivity, [Energy]{Length]/[Area][Time][Degree]
axial dimension of the cylinder, [Length]

length, [Length]

refers to a specific axial index value

index variable for the axial direction

refers to a specific radial index value

index variable for the radial direction

heat flux, [Energy]/[Area][Time]

refers to a specific radial dimension, e.g. Rcyp, [Length]
thermal resistance, [Degree][Time]/|Energy]

radial dimension, [Length]

temperature, [Degree]

time, [Time]

[Vol\ me]

variable used for distance in equations for a semi-infinite solid, [Length]
axial dimension, [Length]

thermal diffusivity, [Length]?/[Time]

. . Bi
non-dimensional parameter, “5-F828T
pOlrroNT

xiv




‘ ¥ non-dimensional surface heat generation, Mﬂm
aTypponr=Ti
Ar radial step, [Length]
At time step, [Time]
Az axial step, [Length]

¢ eigenvalue in the plane wall solution
] temperature difference, (T — T;), [Degree]
A variable of integration
p density, [Mass]/[Volume]
T non-dimensional parameter, TT, ’F RON’T—_T;'
Subscripts
AVE average
sack  back surface of the cylinder
b back surface
’ eyL outer radius of the cylinder
cond conduction (used in Ry cong)
conv convection (used in R cony)
prsk  outer radius of the heated disk
£ finite-difference solution
rront  front surface of the cylinder
s fluid
9 heat generation
gen refers to a specific value of heat generation
i initial
! index variable used in the plane wall solution
la lane (used in A;,)
M refers to a specific axial index value
MAX maximum outer radius as in R,,,, or maximum value as in A

Xv




m index variable for the axial direction

N refers to a specific radial index value
n index variable for the radial direction
SER series solution
R front surface
as steady-state
Superscripts
J refers to a specific time index value
i index variable for time
+ indicates a non-dimensional value
! indicates properties of the surrounding material
Prescripts
d disturbance problem
» preheating problem
Units
K degrees Kelvin
m meters
A% watts
Overbar

— “overbar”, denotes averaged properties between the cylinder and the

surrounding material

Xvi




o AFIT/GA/AA/88M-1

\ Abstract

When using a thin?ﬁlm gage to measure surface heat flux, one typically re-

duces the data for surface temperature to surface heat flux using a series solution for
one-dimensional heat transfer in an initially isothermal, semi-infinite solid. How-
ever, the gage may not behave as an initially isothermal, semi-infinite solid due
to multidimensional heat transfer and electrical preheating of the gage when the

instrumentation is turned on.

To evaluate the accuracy of the series solution for use with thin-film gages,
the heat transfer in a gage was numerically simulated using a two-dimensional,
finite-difference model. The actual geometry of the probe was simplified to reduce
the heat transfer to two dimensions. The simulation produced surface temperatures
which were used in the series solution to find estimates of surface heat flux. The

. heat fluxes from the simulation and the series solution were then compared to

evaluate the accuracy of the series solution.

The analysis provides good insight into the causes of inaccuracies when using

the series solution. It also provides some quantitative results which may be helpful

g

for estimating errors in actual laboratory use. ‘n’kf/lfu Y ENOTIN S
L :' }

xvii




A NUMERICAL INVESTIGATION OF THIN-FILM
HEAT TRANSFER GAGES

1. Introduction

1.1 Background and Motivation

A common experimental technique for measuring surface heat flux in the
laboratory employs a thin-film gage. A thin-film gage is essentially a small quartz
cylinder which has a thin, narrow strip of platinum-——the thin-film sensor—plated
on its front face. Two small wires connected to opposite ends of the thin-film
sensor tun along the side of the quartz cylinder to connect the sensor to recording

instrumentation. Figure 1 is a diagram of a thin-film gage.

The thin-film gage does not directly measure surface heat flux. Instead,
it measures the change in temperature of the surface of the quartz cylinder at
the location of the thin-film sensor as a fuction of time. Because the platinum
film is thin and has a relatively high thermal conductivity, the temperature of
the thin-film sensor should be the same as the temperature of the quartz cylinder
directly beneath it. The resistance of the thin-film sensor is a known function
of temperature. Each gage is calibrated to determine the change in resistance
as a function of change in temperature above some reference temperature [5:p.9].
As the surface temperature of the cylinder changes in response to a disturbance,
the electrical resistance of the thin-film sensor will change. Then, if the gage
is connected in one leg of a properly balanced Wheatstone bridge, the output
voltage of the Wheatstone bridge will be proportional to the change in resistance

of the thin-film sensor. Thus, the output voltage of the Wheatstone bridge circuit




Thin-film sensor

N

N

Figure 1. Diagram of a Thin-Film Gage




indirectly measures the change in surface temperature of the area of the quartz

cylinder directly beneath the thin-film sensor.

Balancing the Wheatstone bridge requires consideration of the electrical heat-
ing in the thin-film sensor. When the input voltage is applied to the bridge, a small
current will flow through each leg of the bridge circuit including the thin-film sen-
sor. This small current will cause some electrical heating in the thin-film sensor
changing the resistance of the sensor and unbalancing the bridge. Therefore, the
circuit must be turned on and allowed to warm up until the transients settle down

before the bridge can be balanced.

To measure the surface heat flux at the front surface of a test specimen, a
thin-film gage is embedded in the specimen. The gage is held in place with a filler
material which provides a sealed fit. The front surface of the gage must be flush

with the front surface of the test specimen.

To get results for surface heat flux using the thin-film gage, one must convert
the data for change in surface temperature as a function of time into values for
surface heat flux as a function of time. In practice, the data is reduced using a
series solution which assumes heat transfer in an initially isothermal, semi-infinite
solid. In many ways, however, the gage does not behave as an initially isothermal,
semi-:nfinite solid during the time when surface temperature data is being collected.
First of all, the electrical heating in the thin-film sensor that occurs while the bridge
is being balanced produces a non-uniform, initial temperature distribution in the
quartz cylinder. Secondly, the electrical heating at any time generates non-uniform
heat flow into the quartz cylinder which induces a three-dimensional temperature
profile and heat flow pattern. Thirdly, heat flows radially in the presence of the
disturbance because the gage is not thermally isolated from its surroundings and
the thermal properties of the surrounding materials are not necessarily identical
to those of the quartz cylinder. For the results for external surface heat flux to

be accurate, the effect of the multidimensional heat transfer on the series solution




must be small.

Ideally, one hopes to measure the external surface heat flux that would be
present in the test specimen if the gage were not there. The external surface
heat flux is the heat flux from the disturbance not including the additional heat
flux from the electrical heating in the thin-film sensor. However, it is readily
apparent that at best the apparatus measures an average heat flux into the front
surface of the gage itself in the region of the thin film. Nevertheless, if the average
surface temperature measured at the gage approximates the surface temperature
that would exist at the test specimen alone and the electrical heating and its
effect on the thermal boundary layer is small, then the surface heat flux values
obtained using the instrumented test specimen approximate the external surface
heat flux that would exist at an uninstrumented test specimen. From this point
on, this analysis will not investigate how well the surface heat flux measured at the
gage approximates the external surface heat flux that would be present at the test
specimen without the gage. Instead, the analysis investigates how well the series
solution, which assumes heat transfer in an initially isothermal, semi-infinite solid,

approximates the actual external surface heat flux at the gage.

1.2 Purpose

The purpose of this investigation is to numerically simulate the heat transfer
in a thin-film gage with a finite-difference model. The simulation will produce
surface temperatures which will then be used in the series solution to find estimates
of the external surface heat flux. The heat fluxes from the simulation and the series

solution will then be compared to evaluate the accuracy of the series solution.

1.8 Approach

Although the actual heat transfer in a thin-filn gage is fully three-dimen-

sional, the analysis uses a simplified model which limits the heat transfer to two




‘ dimensions. The heat transfer is limited to two dimensions by modeling the region
of electrical heat generation as a disk centered on the front surface of the quartz
cylinder rather than the actual thin strip. The two dimensions in the heat transfer
problem are now the radial dimension and the axial dimension into the quartz
cylinder from the front surface. Figure 2 illustrates the simplified, two-dimensional

geometry.

The series solution used to reduce the changes in surface temperature to
values for surface heat flux is based on the assumption that the quartz cylinder
behaves as an initially isothermal, semi-infinite solid when the temperature data is
being collected. A number of variables influence the extent to which the cylinder

departs from a semi-infinite solid. These variables include the following:

e Geometry parameters such as

— the ratic of the length of the quartz cylinder to its radius.

. — the area covered by the thin-film sensor compared to the total surface
area of the front surface of the quartz cylinder. (In the two-dimensional
model, the ratio of the radius of the heated disk to the radius of the

cylinder describes this variable.)

o The magnitude of the thermal disturbance.
o The magnitude of the electrical heating in the thin-film sensor.

o The actual or effective thermal properties of the surrounding materials.

For the cylinder to behave as an initially isothermal, semi-infinte solid, the
temperature distribution in the cylinder must be uniform at the start of test time,
the heat transfer in the cylinder must be one-dimensional, and the cylinder must
be longer than the distance into the cylinder to which the effects of the thermal
disturbance at the front surface propagate. None of these assumptions may be

‘ correct in an actual laboratory experiment.
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Figure 2. Simplified, Two-Dimensional Geometry




The first assumption, that the initial temperature distribution is uniform, is
never exactly correct because the electrical heat generation in the thin-film during
the time when the bridge is being balanced establishes a non-uniform temperature
distribution. The magnitude of the non-uniform, initial temperature distribution
depends upon the magnitude of the electrical heat generation, the external condi-
tions and the amount of time allowed for the heat generation before the start of

test time.

The second assumption, that heat transfer is one-dimensional, is also never
correct. First of all, the initial temperature distribution established by the heat
generation before the start of the test is multidimensional. Therefore, the heat
transfer in the cylinder departs from one-dimensional from the very start. In
the simplified model, the initial temperature distribution will be two-dimensional.
Secondly, even in the absence of preheating, the localized surface heat generation
and the fact that the cylinder is not ideally isolated from the surrounding materials
will cause the one-dimensional assumption to fail eventually. The localized surface
heat generation will produce three-dimensional heat transfer in general, but the

heat transfer is limited to two dimensions by the simplified geometry of the model.

The third assumption, that the cylinder is long compared to the distance
that the leading edge of the disturbance travels, is only valid for times less than
the time it takes the leading edge of the thermal disturbance to travel the length
of the quartz cylinder. A rule of thumb for the distance traveled by the leading
edge of a thermal disturbance into a solid is {1:pp.60-61]

| = 4Vat (1)

where [ is the distance to which the leading edge of the disturbance has traveled,
a is the thermal diffusivity of the solid and t is the time after exposure to the

disturbance. Using this rule of thumb, one would expect the assumption that the




cylinder is long to be valid only for test times less than
where L is the axial length of the cylinder.

The extent to which the cylinder departs from a semi-infite solid is hard to
estimate. It is even more difficult to estimate the error in the values for exter-
nal surface heat flux found using the series solution with the surface temperature
changes from the cylinder. Because it is difficult to analytically estimate the mul-
tidimensional heat transfer in the cylinder and its effect on the results for external
surface heat flux, this analysis estimates the effects through simulation. The sim-
plified, two-dimensional heat transfer problem is simulated using a finite-difference
model on a digital computer. The surface temperatures from the simulation are
used to find the series solution estimate for surface heat flux which is then com-
pared to the external surface heat flux of the simulation. The finite-difference
model allows the vanables to be changed arbitrarily so that one can investigate

the effect of each variable individually.

In investigating the effect of heat transfer across the outer-radial boundary
of the quartz cylinder, one can first bracket the results by looking at three limiting
cases. In the first limiting case, one can model the cylinder as fully insulated at
the outer-radial boundary so that no heat flows across the boundary. This limiting
case is equivalent to surrounding the quartz cylinder by a material whose thermal
conductivity is zero. In the second limiting case, one can surround the cylinder with
a material whose thermal conductivity is infinite. The second material is assumed
to be in thermal contact with a heat sink maintained at the initial temperature
of the gage. In this case, the heat flux radially out of the cylinder is a theoretical
maximum. In the third limiting case, one can again surround the cylinder with
a material whose thermal conductivity is infinite. However, for this case, the
temperature of the surrounding material is assumed to be that of the external

disturbance. In this case, the heat flux radially into the cylinder is a theoretical




maximum. The first two cases bracket all possible effects due to heat flux radially
out of the cylinder. The first and third cases bracket all possible effects due to
heat flux radially into the cylinder.

In addition to bracketing the results, the analysis will consider a couple of
intermediate cases for heat flux across the outer-radial boundary of the cylinder.
In order for heat to flow across the outer-radial boundary of the cylinder, the sur-
rounding material must have a non-zero thermal conductivity, and there also must
be a temperature gradient at the boundary. The value of the thermal diffusivity
in the surrounding material for the most part determines the direction of the heat
flux established across the outer-radial boundary of the cylinder. Equation 1 shows
that a thermal disturbance will propagate faster in a material with a larger thermal
diffusivity. In other words, a material with a larger thermal diffusivity will heat
up faster. Thus, if the thermal diffusivity of the surrounding material is smaller
than the thermal diffusivity of the quartz cylinder, heat will flow radially out of the
cylinder. On the other hand, if the thermal diffusivity of the surrounding material
is greater than the thermal diffusivity of the quartz cylinder, heat may flow into
the cylinder. It is important to note, however, that the electrical heat generation
will always tend to establish a temperature gradient for heat to flow radially out-
ward. For heat to flow into the cylinder, this temperature gradient must first be

overcome.

Another simplification in the two-dimensional model involves the way in
which the intermediate cases for heat flux across the outer-radial boundary of
the cylinder are modeled. As mentioned in the first section, the gage is embedded
in the test specimen using a filler material. Thus, the true heat transfer problem
involves three materials: the quartz cylinder, the filler material, and the test spec-
imen. However, the surrounding materials affect the results for external surface
heat flux only to the extent that they induce heat flux into or out of the cylinder.

The model for the intermediate cases for heat flux across the outer-radial bound-




ary of the cylinder uses only two materials: the quartz cylinder and a surrounding
material. Using two materials is equivalent to modeling the effective tendency of
the surrounding materials to induce heat flux across the outer-radial boundary of

the cylinder.
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II. The Finite-Difference Model

Before discussing the finite-difference model, it is instructive to first look at
the differential equations for the two-dimensional model. A good understanding
of the differential equations will help in developing the finite-difference model and
in understanding the approximations caused by the discretization. Also, non-
dimensionalizing the differential equations will yield the important non-dimensional

parameters in the two-dimensional model.

2.1 The Differential Equations

Incropera and Dewitt derive the governing equations for heat transfer in
a solid using an energy balance on the appropriate differential control volume
[4:pp.43-53). For a homogeneous, isotropic solid—one in which properties are
constant with position and uniform in all directions—the governing equation for
temperature in two-dimensional, cylindrical coordinates is
19 ( 0T T 10T
:a—r("a—r) 7 T2 ®)
where r is the radial dimension, z is the axial dimension and thermal diffusivity,
@, is the ratio of thermal conductivity to thermal capacitance, a =k/pc, . A
general solution of Equation 3 will give the temperature distribution in the solid
as a function of the two spacial coordinates, z and r, and time t. The solution of
Equation 3 is governed by the initial condition on time and the boundary conditions

for each of the two spacial coordinates.
The initial condition for the two-dimensional model before preheating is sim-

ply
T(r,z) =T, fort <0 (4)

The boundary conditions for the two-dimensional model require further explana-

tion.
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2.1.1 Front Surface Boundary Condition The front surface boundary con-
dition must include consideration of the electrical heat generation in the thin-film
sensor. As previously mentioned, the two-dimensional model models the sensor
as a disk centered on the front surface of the cylinder. Using three assumptions,
the thin-film sensc' can be modeled simply as a region of surface heat generation.
First, because the sensor is an extremely thin film of platinum, the total thermal
capacity of the sensor is small. Secondly, the thermal contact between the plat-
inum film and the quartz cylinder is assumed to be good so that the temperature
of the lower side of the platinum film is the same as the surface temperature of the
quartz below it. Lastly, the thermal conductivity of platinum is large. Because the
sensor is very thin and has a large thermal conductivity, the temperature through
the sensor essentially will be constant and equal to the temperature of the quartz
below it. Because the thermal capacity of the sensor is small, its energy storage is
negligible. Figure 3 illustrates an energy balance across the sensor using the above

assumptions. Performing the energy balance yields

qs = thONT(T!FRONT -T,) + 9 (5)

where ¢, is the heat flux into the cylinder, h .,y (Tfrronr — Ts) is the heat flux
into the disk from the fluid and g, is the electrical heat generation per surface area

of the disk. Then, the boundary condition for the front surface of the cylinder is

hPRONT(TfFRONT -T,)+ gg for0<r< Ry Ax

g, = —k ?9?) = (6)
z=0 hFRONT(TfFRONT ~-T,) for Ry, <7 < RMAX

2.1.2 Back Surface Boundary Condition The boundary condition at the
back surface is similar to the boundary condition at the front surface without the
complication of the thin-film sensor. Us’ag the sign convention that positive heat
flux points in the positive z direction, positive heat flux at the back surface is heat

flux out of the cylinder instead of into the cylinder:

or
@ =—k 'a—z) = —haACK(TfaACK - T) (7)
z=L
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Figure 3. Energy Balance Across the Thin-Film Sensor
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where T} is the temperature on the back surface of the cylinder.

2.1.8 Inner-Radial Boundary Condition For the two-dimensional model,
heat flux in the radial direction anywhere in the cylinder is the same regardless of
the angular position in the cylinder. This radial symmetry can be satisfied only if
the heat flux in the radial direction at the centerline is zero. Then, the inner-radial

boundary condition for the two-dimensional model is

oT
w=-t3) =0 ®

2.1.4 Outer-Radial Boundary Condition A general statement for the bound-
ary condition at the outer radius of the cylinder is similar to the general statement
for the boundary condition at the front and back surfaces. The heat flux crossing
the outer-radial boundary must be equal to the heat flux in the radial direction on
either side of the boundary. In this case, however, both sides of the boundary are
solids, so the boundary condition uses Fourier’s law for heat conduction on both

sides:

o) o) o
r r=Rcy, r '=R2w.

where k' is the thermal conductivity of the surrounding material. An important
assumption in using this boundary condition is that the thermal contact between

the quartz cylinder and the surrounding material is good.

As described in Section 1.3, it is worthwhile to investigate three limiting cases
for the boundary condition at the outer radius of the cylinder. Each of the limiting
cases can be modeled without actually including the surrounding material in the

model.

The first limiting case is the case for no heat flux across the outer-radial
boundary of the cylinder. The boundary condition for the fully-insulated or adia-

batic case is

g = —k ——) =0 (10)
or r=Rcyt




The second limiting case is the case for theoretically maximum heat flux out
across the outer-radial boundary of the cylinder. This limiting case is equivalent to
assuming that the thermal conductivity of the surrounding material is infinite and
that the surrounding material is in thermal contact with a heat sink maintained
at the initial temperature of the gage. Then, the temperature in the surrounding
material is always the initial temperature. Thus, the outer-radial boundary con-
dition on the cylinder for the limiting case of maximum heat flux out is simply a

condition of constant temperature:

T(r=R,,,,z) =T, (11)

The third limiting case is the limiting case for theoretically maximum heat
flux in across the outer-radial boundary. This case is equivalent to assuming that
the thermal conductivity of the surrounding material is infinite and that the sur-
rounding material is maintained at the temperature of the external disturbance.
The outer-radial boundary condition on the cylinder for the limiting case of max-

imum heat flux in is also a condition of constant temperature:

T(r=R.y,,z)=T; (12)

When including the surrounding material in the model, the differential equa-
tions for heat transfer in the surrounding material are identical to those for heat
transfer in the cylinder except that the properties for the surrounding material are
used in place of the properties for quartz. The outer-radial boundary for the sys-
tem is now the outer-radial boundary of the surrounding material, and one of the
three limiting cases must be used for the outer-radial boundary condition on the
system. Equation 9 then serves as a compatability equation at the discontinuity

between the two materials.
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‘ 2.2 Non-Dimensional Parameters

When non-dimensionalizing the differential equations, it is first necessary to
specify the non-dimensional form for the variables. Then, the form of the equa-
tions will reveal the relevant non-dimensional parameters of the problem. In this
problem, it is helpful to separate the total heat transfer problem into two sepa-
rate problems which use different non-dimensional forms for the variables and have

some different non-dimensional parameters.

The first of the two problems is the preheating problem. The preheating
problem models the period of time during which the instrumentation circuitry is
turned on and the bridge is being balanced. The test specimen is not exposed to
the external disturbance during the preheating problem. Instead, the system is
disturbed by the electrical heat generation. There are three basic assumptions for

the preheating problem:

‘ e The external fluid temperature on both the front and back surfaces remain

at the initial temperature of the system.

¢ The values of the convection coefficients on both surfaces are typical free

convection values.

e The surface heat generation is always some non-zero value.

For the preheating problem, the non-dimensional forms for the two dependent

variables T and q are

T-T,
gt = —— 13)
? (‘Ig/phmmvr) (

+ q
gt = = (14)
g qg

The second problem is the disturbance problem. The disturbance problem
models the heat transfer after the test specimen is exposed to the external dis-

. turbance. The initial temperature distribution for the disturbance problem is the
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final temperature distribution from the preheating problem. There are three basic

assumptions for the disturbance problem as well:

o The external fluid temperature at the front of the test specimen is different

from the initial temperature of the system.

o The value of the convection coefficient on the front surface of the test speci-

men can be any typical forced convection value.

¢ Heat generation may or may not be present.

For the disturbance problem, the non-dimensional forms for the two dependent

variables are

T-T
HF = —— T 15)
deFRONT -T; (
aqt = 1 (16)

thRONT(deFRONT - T.)

It will be valuable to look at cases where the heat generation is zero. If the
surface heat generation is zero, then the solution to the preheating problem is the
trivial solution; the temperature remains at the initial temperature of the system
until exposed to the external disturbance. Thus, the total heat transfer problem

includes only the disturbance problem when the heat generation is zero.

The preheating problem and the disturbance problem are non-dimensional-
ized differently to account for the different conditions in the two problems. The
preheating problem is non-dimensionalized with g¢;/4hppoyr in the denomina-
tor because the temperature difference Ty pony — Ti is zero in the preheaing
problem but the heat generation is never zero. The disturbance problem is non-
dimensionalized with the temperature difference 4Ty, vy — T 1n the denominator

instead to allow the surface heat generation to be zero for the disturbance problem.
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The non-dimensional forms for the independent variables r, z and ¢ are the

same in both problems. They are

+ r

rv = 17
RCYL ( )

+ _ 2

27T = 7 (18)
at

th = 5 (19)

With these definitions for the non-dimensional variables, the differential equa-
tions can be non-dimensionalized. The non-dimensional, governing equation for

temperature within the solid for either problem is

L 1*1 0 (,08t\ 0%* 08¢
- = 2
i.ch] r+ ort (r ar+) + 0z ot (20)
The initial condition for the preheating problem is
6% (r*,2%) =0 fort <0 (21)

Recall that the initial condition for the disturbance problem is the final temperature

distribution from the preheating problem.

It is interesting to note that Equations (20) and (21) remain the same regard-
less of the non-dimensional form for temperature difference, § =T — T; . One can
multiply Equations (20) and (21) by any non-dimensional constant changing the

form for the non-dimensional variable, 6, and the equations will remain the same.

The non-dimensional equations for the two seperate problems differ only in
some of the boundary conditions. The non-dimensional boundary conditions for

the preheating problem are as follows:

Top surface boundary condition;

- PhPﬂONTL - 60+
k 0zt ) 4 o

{ -6t +1 for0§r+§[ﬂm£1i]

Reve 29
- oF for [Bpisk| < p+ < [Ruax )

Reye
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Bottom surface boundary condition;

hoaei L)™' 96*
_ | 2"Back — gt
[ k ] az+)z+=1 06 (23)
Inner-radial boundary condition;
60*)
- =0 24
or+ r+=0 ( )

Outer-radial boundary conditions;

Boundary between materials —for use when including the surrounding ma-

terial in the model,

o6+ k'| o6*
EI)!‘*:I' B [-k—:] ér—+)r+=l+ (25)
or
Fully-insulated,
06+
— = 9
ar+ ) =1 0 (“6)
Mazimum heat fluz out,
6t (rt =1,z%)=0 (27)
Mazimum heat fluz in,
6t(rt=1,z*)=0 (28)

for the limiting cases.

The non-dimensional boundary conditions for the disturbance problem are

the following:

Top surface boundary condition;

-1
_ [thRONTL] 89+) (29)
k Jz+ 420
+ (9g/ hEEQMI) + Rpisk
= { - 0’ + [(d;’:RONT_T') for0<r* < [ Reye ] (30)
R - R
1-6} for FLst ] <rt< [Mﬂcn]
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Bottom surface boundary condition;

hpack L] 06* .
[ k ozt 24=1 =0 (31)
Inner-radial boundary condition;
66*)
e =0 32
or+ rt=0 ( )

Outer-radial boundary conditions;

Boundary between materials —for use when including the surrounding ma-

terial in the model,

0.-EE.
ar+ rt=1- k ar+ rt=1+ )
or
Fully-insulated,
o0+
5,7)r+:1 =0 (34)
Mazimum heat fluz out,
*(rt=1,27)=0 (35)
Mazimum heat fluz in
g (rt =1,27) =1 (36)

for the limiting cases.

The non-dimensional differential equations for the heat transfer in the cylin-
der during the preheating and disturbance problems include the following non-

dimensional parameters which govern the solution:

External fluid conditions and electrical heat generation;

_ PhFRONTL (37)

pBlpponr = k
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PBiBACK = &%ﬁ (38)
Bipson = Lrmonrl (39)
Bigyoy = Dasexl (40)

_ @ebenens) "

(deFRONT - I:)
(deBACK — T,)

T = 42
(deFRONT - T.) ( )

Geometry ratios;

- (43)
RCYL
RDISI\'
44
Rex. )
Property ratio
k/
T (45)

Two additional non-dimensional parameters arise when including the sur-
rounding material in the analysis. The first is a geometry ratio specifying the

extent of the surrounding material:

Ry ax
46
Ry, (46)

The second is another property ratio—the ratio of thermal capacitances:

(pcp) (47)

(pcp)

When incorporating the final temperature distribution from the preheating
problem as the initial temperature distribution to the disturbance problem, an-
other non-dimensional parameter can be defined for convenience. Non-dimensional
temperature values from the preheating problem can be converted to the non-
dimensional form used in the disturbance problem by multiplying by the ¢ »neration

ratio, v, and a derived parameter, 3, which is the ratio of the convection coefficient
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. at the front surface in the disturbance problem to the convection coefficient at the

front surface in the preheating problem:

ﬂ = dBiFRONT (48)

PBzFRONT

2.8 The Finite-Difference Equations

Without an analytical solution to the differential equations for the two-
dimensional model, it is necessary to approximate the transient solution through
simulation. The most common method for simulating heat transfer is to rin a
finite-difference model on a digital computer. Various finite-different schemes are
available. This analysis uses an explicit finite-difference scheme derived using the
control-volume approach. The explicit scheme uses second order, central differences
for the spatial derivatives and first order, forward differences for the time deriva-
tives. Incropera and Dewitt present the control-volume approach in developing

. finite-difference models for conduction heat transfer problems [4:pp.143-149,213~
220]. The control-volume approach has the advantages of being easy to use and
versatile in application to different and complicated boundary and geometry con-
ditions. The control-volume approach is also a conservative approach which means
that the finite-difference model developed using the control-volume approach will
satisfy the statement of conservation of energy to within the truncation error for
the model. The finite-difference models used for the single-material and the two-
material problems with fully-insulated, outer-radial boundary conditions are given

in Appendices D.1 and D.2, respectively.

2.3.1 Discretizing the Model The first step in developing the finite-differ-
ence model is to discretize the continuous model in both space and time. Figures 4
and 5 illustrate the discretized geometry of the single-material problem and the
two-material problem, respectively. To discretize the geometry, the cylinder and

the surrounding material are subdivided into nodal regions. Associated with each
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nodal region is a reference point or reference level for the region called a node. All
nodal regions are annular rings except for those on the centerline of the cylinder
which are cylinders of radius Ar /2. Interior nodal regions—those not on an exterior
system boundary—are annualar rings of width Ar and depth Az. Nodal regions on
exterior system boundaries are generally assigned half the step size of interior nodal
regions. For nodal regions at any boundary, the node is placed on the boundary.
Placing nodes directly on the boundary rather than one-half spacial step in from
the boundary provides better resolution of the boundary conditions. Because the
heat transfer in the two-dimensional model is axi-symmetric, the reference point
for nodal regions other than those on the centerline of the cylinder can be any

point on an annular ring at the reference radius and depth.

In general, discretizing the geometry means that the finite-difference model
only solves for temperatures at the nodes. The temperature at a node represents
an average temperature for the nodal region. For the purpose of deriving the
finite-difference equations, conditions across the nodal region are often assumed
constant and equal to the conditions associated with the node or the nodal region.
Continuous time is discretized similarly, so the finite-difference model only solves

for temperatures at discrete intervals in time as well.

To identify positions in the nodal geometry mesh, the index value n specifies
the radial position of the node, and the index value m specifies the axial position of
the node. When used as subscripts, the radial index is placed first such as in 8,, ,,.
(The only exceptions are for values denoting surface conditions using the subscripts
s and ¢ to denote the axial positions on the front and back surfaces, respectively.
Subscripts s and » are placed before the radial index value as in 8,,.) The index
value of zero for n denotes postions on the centerline of the cylinder where the
radial dimension is zero. The index value of zero for m denotes positions on the
front surface where the axial dimension is zero. Then, the radial position of a node

with radial index n is r = nAr . Similarly, the axial position of a node with axial
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index m is z = mAz . The index value j specifies the time level in discretized
time. The time index j is usually placed as a superscript. The index value of zero

for j denotes time t =0 , so the *ime denoted by index jis t = jAt .

2.9.2 Nodal Equations In the explicit scheme, a finite-difference equation
for each node estimates the temperature of the node at the new, unknown time
level in terms of the temperatures of the node itself and surrounding nodes at
the old, known time level. The finite-difference equations are developed using an

energy balance on the individual nodal volumes.

For the purpose of deriving the finite-difference equations, one assumes that
the heat flux at each surface of the nodal volume is directed into the nodal volume.
Of course, the actual direction of the heat flux during the simulation depends
on the temperature profile. This sign convention merely helps in developing the
equations correctly. One also assumes that the heat flux at each surface of the
nodal volume is constant and equal to the heat flux at the reference level. Then,

the energy balance at each nodal volume is

oT
QAL+ @A+ @Az + g4 Ay = (PCP)V'a—t (49)

The subscripts 1-4 denote the inner-radial, outer-radial, front (smaller axial dimen-

sion) and back (larger axial dimenion) surfaces of the nodal volume, respectively.

The develoment of each nodal, finite-difference equation requires specific in-
formation about the node whose equation is being developed. Nevertheless, the
procedure is basically the same for all nodes. To illustrate the process, the steps are
outlined for an interior node in the cylinder. Figure 6 shows the nodal geometry

for an interior node in the cylinder.

The first step is to specify the dimensions of the nodal region. For an interior

node in the cylinder
A = 2n(n-1/2)ArAz (50)
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Figure 6. Nodal Geometry for an Interior Node in the Cylinder




A; = 2r(n+1/2)ArAz (51)
Ay =« [(nAr + Ar/2)? — (nAr - Ar/2)2] = n(2n)Ar? (52)
Ay = 7w(2n)Ar? (53)
and
V = n(2n)Ar?Az (54)

The next step is to determine a finite-difference expression for the heat flux
at each of the surfaces of the nodal volume. For an interior node, a finite-difference
expression for the heat flux at each surface is determined from Fourier’s conduction
law using a central difference to approximate the temperature gradient. Using the
finite-difference expressions for heat flux and a forward difference to approximate
the time derivative, a finite-difference expression for the energy balance at an

interior node in the cylinder is

(TH — Tim
pCp [w(Zn)ArzAz] —At_l =
(Tj-l,m - T'r{;m)
~Ar
(T1i+l.m - Tr'{.m)
Ar

m) +k [7r(2n)Ar2] (

k{2n(n —1/2)ArAz]

+ k27 (n + 1/2)ArAz]
-1
Az

(55)

Tr-:,m-H - Tr{.m)
Az

+ k [r(2n)Ar?] (Zom

By calculating the spacial derivatives at the old time level, 7, and not at
the new time level, j + 1, or some combination of the two, the finite-difference
scheme will be an explicit scheme. The only unknown in each nodal equation is
the temperature of the node at the new time level, j + 1, used in the forward-
difference approximation for the time derivative. Solving for the temperature of
each node at the new time level is straightforward. Grouping temperature terms
for the same node at the same time level toget’ cr and solving for the temperature

at the new time level gives the dimensional form for the nodal finite-difference
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equation for an interior node in the cylinder:

- At . At
J+l _ o 3
. a(l l/zn)(ArPT""’"‘ +a(l+ 1/2n)—(Ar)2 aim
At At
+ a(AZ)2 Tv‘:.m-—l + a(AZ)z Tr{,m+1 (56)

It is not necessary to derive the finite-difference equation at each node. Nodes
that have similar geometry and the same boundary conditions will have identical
finite-difference equations. The only difference in the equations will be the specific
values of the indexing variables. Also, when including the surrounding material in
the model, one must be careful to use the correct property values for each term
in the energy balance. For the single-material problem, there are nine different
forms for the nodal finite-difference equations corresponding to the nine different
locations labeled (a)—(i) in Figure 4. For the two-material problem, in which
both the cylinder and the surrounding material are included in the finite-difference
nodal mesh, there are fifteen different forms for the nodal finite-difference equations

corresponding to the locations labeled (a)—(o) in Figure 5.

2.3.83 Boundary Conditions An advantage of the control-volume approach
in deriving the finite-difference equations is the ease with which the boundary con-
ditions and material boundaries are incorporated in the finite-difference model.
The continuous forms of the boundary conditions for the two-dimensional model
were introduced in Sections 2.1.1-2.1.4. Recall that the single-material problem
uses one of the three limiting cases for outer-radial boundary condition on the cylin-
der. The two-material problem must also use one of the three limiting cases for
the outer-radial boundary condition on the surrounding material. The boundary
between the materials in the two-material problem will require special considera-

tion.

To incorporate the front surface boundary condition in the finite-difference

model, the nodal energy balance for nodes at the front surface is modified. The

29




heat flux into the nodal region across the front surface, g, is determined from the

front surface boundary condition, Equation (6):

hFRONT(TfFRONT - Tr{.O) + 9 for0<n < Nmsx

j (57)
hFRONT(T!FRONT - Tr':,o) for Ny,se +1<n < Noyax

g3 =

The only approximation in applying the front surface boundary condition to the
finite-difference model is the assumption that the heat flux is constant across the
nodal region and equal to the heat flux evaluated at the node. Assuming that the
heat flux is constant is equivalent to assuming that the temperature on the surface

of the nodal region is constant and equal to the temperature at the node.

The back surface boundary conditon is incorporated similarly. The nodal
energy balance for nodes on the back surface uses the back surface boundary con-
dition of Equation (7) to determine the heat flux into the node across the back
surface:

94 = hBACK(TfBACK - T;{,MMAX) (58)

One of the three limiting cases for the outer-radial boundary condition must
be used for the outer-radial boundary condition of the system. To use the fully-
insulated case, the energy balance for nodes on the outer-radial boundary is mod-
ified by setting the heat flux into the node from a larger radial position equal to

zero:

=0 (59)

The cases for maximum heat flux out across the boundary and maximum heat flux
in across the boundary are realized by keeping the temperature of the node on the
boundary equal to some constant. The nodes on the outer-racial boundary do not
need a finite-difference equation since the temperature at the next time level does
not change. In the case for maximum heat flux out, the temperature at each node

on the outer-radial boundary remains at the initial temperature:
Thyaxm = T; (60)
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In the case for maximum heat flux in across the outer-radial boundary, the temper-

ature at each node on the outer-radial boundary remains at the fluid temperature:
Tnpyaxm =Ty (61)

2.9.4 The Boundary Between Materials For the two-material problem, in
which the thermal conductivities of the materials are different, the temperature
gradient at the boundary between the materials is discontinuous. Nevertheless,
energy is still conserved. Because the control-volume approach is based on the con-
servation of energy for each nodal volume, the development of the finite-difference
equations for nodes on the boundary between the materials remains essentially the
same. The same assumptions are used with special care to account for the change
in properties. Figure 7 shows the nodal geometry for a node on the boundary

between the materials.

The conductivities to use in the expression for heat fluxes ¢; and g, are readily
apparent. Heat flux ¢; in the cylinder uses the thermal conductivity of the cylinder,
while heat flux ¢ in the surrounding material uses the thermal conductivity of the

surrounding material:

TJ' _ T

q1 — k( NCYL-lvar NCYL,m) (62)
Tj Ty

g = k'( NCYL+1ymAr Ncn,m) (63)

The heat flux at the front and back surfaces, ¢z and ¢y, is a function of both
thermal conductivities. The axial temperature gradient at each surface is still
assumed constant and equal to the axial temperature gradient evaluated at the
boundary. However, the heat flux at the portion of the surface in the cylinder is
determined using the thermal conductivity of the cylinder, while the heat flux at the
portion of the surface in the surrounding material is determined using the thermal
conductivity of the surrounding material. The heat flow through each portion of

each surface is the product of the heat flux at each portion of each surface times
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Figure 7. Nodal Geometry for a Node on the Boundary Between Materials
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the area of the portion of the surface. Then, the total heat flow across each surface
is equal to the sum of the heat flows across each portion. Finally, the average heat

flux across each surface is the total heat flow divided by the total surface area.

An equivalent method of calculating the heat flux at each surface is to use
an average value for thermal conductivity, k, which is weighted according to the

fraction of the surface area in each of the two materials:

k(NCyL - 1/4) + kl(NCYL + 1/4)

k=
2NcyL (64)
Then, the finite-difference expressions for ¢; and ¢4 are
T TJ me— _Tj L m
g = k( Neve, IAZ Neye, ) (65)
A Tj m+1 2 L,m
qgs = k( Neye, +1Az Neyzm) (66)

The total thermal capacity of the nodal volume is equal to the thermal capac-
ity contributed by the surrounding material plus the thermal capacity contributed
by the quartz material. The thermal capacity contributed by the surrounding
material is the thermal capacitance of the surrounding material times the part of
the nodal volume made up by the surrounding material. The thermal capacity
contributed by the quartz material is determined similarly. Again, an equivalent
method of calculating the total thermal capacity is to multiply the total nodal vol-
ume by an average thermal capacitance which this time is weighted by the fraction

of volume in each material:

.+ (pep)(Neyr — 1/4) + (pep) (NeyL + 1/4)
(Pcp) - 2NCYL

(67)

Then, the energy storage term for nodal volumes on the boundary between the

materials is

i .
(T}{;ZYL,M - Tg/CyL.m) (68)

. e ’
Eatore (pcp)A‘ At
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2.3.5 Non-Dimensional Nodal Equations The nodal equations are non-di-
mensionalized the same way that the differential equations are non-dimensionalized.
First, the non-dimensional form of the variables is specified. Then, the non-
dimensional form of the equations determines the relevant non-dimensional param-
eters in the problem. As explained in Section 2.2, the total heat transfer problem
is divided into two seperate problems, the preheating problem and the disturbance
problem. The two problems use different non-dimensional forms for the dependent
variables T and g but the same non-dimensional forms for the independent vari-
ables 7, z and t. The non-dimensional nodal equations are the same except for the

nodes on both the front and back surfaces (see Section 2.2).

The non-dimensional forms for temperature and heat flux in the preheating
and disturbance problems are given in Equations (13)—-(16) in Section 2.2. As
in the dimensional form of the nodal equations, the independent variables in the
non-dimensional nodal equations are expressed as an index value multiplied by a

non-dimensional step size:

rt = nArt (69)
¥ = mAz?t (70)
tt = jAt* (71)

The non-dimensional step sizes are

Ar 1
Art = = (72)
RCYL NCYL
Az 1
Azt = — = (73)
L MMAX
t
At = "‘LAZ (74)

The outer-radial boundary of the cylinder is always at non-dimensional radius of
1.0. Then, for the two-material problem, non-dimensional radius values in the sur-
rounding material are greater than 1.0. Similarly, the back surface of the cylinder

is always at non-dimensional axial dimension of 1.0.
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The non-dimensional, finite-difference model does include the very same
non-dimensional parameters introduced in Section 2.2. Three additional non-
dimensional parameters in the finite-difference model are the non-dimensional step
sizes; Ar, Az and At. One can think of the index variables n, m and j as being
the independent variables in the finite-difference model, while the non-dimensional
step sizes are additional parameters peculiar to the finite-difference model. The
continuous model should be equivalent to the limiting case of the finite-difference
model as the step sizes approach zero. Two other property ratios, k/k and pc, /P&y,
appear in the non-dimensional nodal equations for nodes on the boundary between
the two materials. However, these two property ratios are functions of other inde-

pendent, non-dimensional parameters:

% (1-1/4ar%) + [¥] (14 1/441)

P 2 (1)
(b ((1=1/48r%) 4[] 7 (14 /aart)) T
7~ z o

The non-dimensional nodal equations for the single-material and two-materi-
al problems using the fully-insulated, outer-radial boundary condition are given in
Appendices A.1 and A.2, respectively. To use the outer-radial boundary conditions
for maximum heat flux out or maximum heat flux in, the nodal equations for nodes
on the outer-radial boundary are omitted, and the temperatures for nodes on the
outer-radial boundary are set to the appropriate constant values. For the limiting
case of maximum heat flux out, the non-dimensional temperature at the outer-
radial boundary is zero. For the limiting case of maximum heat flux in, the non-
dimensional temperature at the outer-radial boundary is zero for the preheating

problem and one for the disturbance problem (see Equations 27, 28, 35 and 36).

2.9.6 Stability Criterion When using an explicit method, the time step can
not be chosen arbitrarily. The time step must be small enough to ensure that the

system is stable. The instability in an explicit method results from evaluating the
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finite-difference expression for net heat flux into the nodal volume at the old time
step rather than at the new time step or a combination of the new and old [4:p.215].
The change in temperature during a time step tends to reduce the temperature
gradients that caused the net heat flux, which then decreases the magnitude of
the net heat flux into the control volume. For example, if heat is flowing into a
control volume at some time level, the temperature in that control volume will
increase. The increase in temperature of the control volume will tend to reduce
the temperature gradients that caused the heat to flow into the control volume,
which in turn decreases the rate at which heat continues to flow into the control

volume.

The explicit method ignores this compensatory effect. Instead, the explicit
method evaluates the net heat flux into the nodal volume at the old time level
and assumes that this net rate of energy flow into the control volume is constant
throughout the next time step. It then predicts the temperature at the node for the
new time level using the net rate of energy flow evaluated from the old time level.
As a result, if the time step is too large, the explicit method can predict a change in
temperature which violates the second law of thermodynamics. The overprediction
in each step of the explicit method can also cause the solution to oscillate without
necessarily becoming unstable. Instabilities occur when these oscillations grow so
that eventually the temperatures alternate between increasingly larger positive and

negative values.

Incropera and Dewitt suggest a criterion to use in finding the maximum al-
lowable time step [4:p.215). The criterion they suggest is easy to use and not only
assures that the system will be stable but also helps to assure that the solution will
not oscillate. For heat transfer with constant boundary conditions, temperatures
at each node should change smoothly in one direction. Temperatures should not
increase in one time step, decrease in the next, and increase in the following. In-

cropera and Dewitt suggest limiting the time step so that the coefficients in front
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of the temperature terms in all the nodal equations (see Appendix A) are positive.
It is easy to see that this criterion assures stability; if this criterion is satified,
there is no mechanism for non-dimensional temperatures to become negative. It
is important to apply the criterion to all nodal equations and not just the inte-
rior nodal equations. If a solution diverges at any node, the whole solution will
eventually diverge. In fact, the nodal equations for nodes on the boundaries in the
two-dimensional model will have more severe stability requirements because their
dimensions are smaller. Although the criterion suggested by Incropera and Dewitt
is a sufficient but not necessary criterion for stability, the time steps determined
using the criterion are often very close to time steps which cause instability in the

two-dimensional model.

For the single-material problem, the nodal equation for the node at the cen-
terline and on the surface with the larger Biot number, usually the front surface,

has the most severe stability requirement (node (a) in Figure 4):

-1
L .
Att < (4 [RCYL] N:‘YL - ZM:,AX - 2BZMAXA[MAX) (77)

For the two-material problem, the nodal equation with the most severe stability
requirement depends on the values of the property ratios. In any case, the node
with the most severe stability requirement is again a node on the surface with
the larger Biot number, usually the front surface. The node with the governing
requirement may be the node at the centerline, the node at the material boundary
or any of the nodes between the material boundary and the outer-radial boundary
(node (a), node (c) or nodes in region (d) in Figure 5). The stability requirement

for these three nodal equations in their respective order are

2 -1
Att < (4[ L ] N? —QM:AX—2BiMAXMMAX) (78)

CYL
RCYL

!

el L) e [ - 1204 [ v 172)

(p_cp) CYL

At+<{
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(pcy) Zc_- 2 Q’i) ; -1
ez 2] oaz,, +2[E2) B0 (79)
and
; (pes) [E} Lr 2 [QCL) [E] 2
AtT < (2 [(pcp)’ k [ch Ncn.+2 (pcp)/} k M, .x
(p%) | o

The second two stability requirements can become more severe than the first for

cases in which (p¢p)/(pc) > 1 or k'/k > 1 or both.

2.8.7 Convergence Criterion for the Preheating Problem The preheating
problem models the time after the instrumentation is turned on during which
the Wheatstone bridge is being balanced. The preheating of the quartz cylinder
continues until the temperature of the thin-film sensor stabilizes enough that the
bridge can be balanced. When simulating the preheating problem, some criterion
must be used to determine when to end the preheating problem and begin the
disturbance problem. The criterion used in the simulation models the decision to
end the preheating problem by quitting when the rate of change in the solution
is less than some tolerance value. Specifically, at each time level the criterion
picks the largest change in non-dimensional temperature at any node, divides the
absolute value of that largest change by the largest non-dimensional temperature
in the system, and then divides this normalized maximum change by the time step
to arrive at a maximum normalized rate of change. The maximum normalized
rate of change is then compared with the tolerance value. Figure 8 illustrates the

decision.

The maximum change is normalized with the largest non-dimensional tem-
perature at that time step to better model the decision process. To an external
observer the system seems to stabilize when the noticeable rate of change is small.
The normalized rate of change measures the noticeable rate of change. For exam-

ple, a non-dimensional temperature change of 0.002 in one time step can represent
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. a significant rate of change when the maximum non-dimensional temperature value
at that time is 0.04. However, the same non-dimensional temperature change of
0.002 in another time step can represent an insignificant and unnoticeable rate of

change if the maximum non-dimensional temperature value at that time is on the

order of 1.

2.4 The One-Dimensional Series Solution

Thin-film heat transfer gages measure the temperature on the front surface
of the gage at the location of the thin-film sensor. Surface heat flux is derived
from this data using the one-dimensional series solution first proposed by Cook
and Felderman [2:pp.561-562]. The underlying assumption for the series solution

is that the quartz cylinder behaves as an initially isothermal, semi-infinite solid.

The governing equation for temperature in a semi-infinite solid is [4:p.202]
00 a6
® 3~ "o (81
where z is the distance into the solid. The initial condition and the boundary

condition for large z in an initially isothe.inal, semi-infinite solid are

i

(z,t <0) = 0 (82)

6(z — oo,t > 0)

0 (83)

The series solution is based on the solution for temperature in a semi-infinite solid
with constant surface temperature. The front surface boundary condition on z for

the problem with constant surface temperature is
6(z =0,t >0) =6, (84)

The solution for temperature in the semi-infinite solid with constant surface tem-

perature is [4:p.203]

8(z,t) = 8,crfc (2 5&) (85)

40

I —




Using the Duhammel superposition method and this temperature solution,
one can derive a complete expression for the temperature distribution within an
initially isothermal, semi-infinite solid when the surface temperature is some known
function of time. This expression is in the form of an integration over time of the
surface temperature. One can then solve for the surface heat flux at any time using
Fourier’s conduction law immediately below the surface, ¢, = —k“):_o . The
expression for surface heat flux is also in the form of an integration over time of
the surface temperature. The integral expression used by Cook and Felderman,
modified slightly to be in terms of basic properties, is

k 9,(t) A=t g.(t) — 48 6,(t) — 6,(A)
2.(t) = 7120172 [ 1172 2/ (t — \)¥/2 d’\] (86)

Cook and Felderman proposed to approximate the exact integral solution for
surface heat flux by approximating the surface temperature function as a piecewise
linear function of time. Then, the integral in Equation 86 can be performed exactly.
The resulting equation for surface heat flux is in the form of a series summation
of surface temperatures at discrete values of time. Rearranged slightly, Cook and

Felderman'’s series solution for surface heat flux is [5:p.12]

2k | 6.(to) 0,(t;) — 6:(j-1)
6(t)) = T ‘7t1/2 Z 1 (tr =)V + (1, J—t )2 (87)

For a solid that does behave like an initially isothermal, semi-infinite solid,
the only approximation results from modeling the actual surface temperature func-
tion as a piecewise linear function of time. Cook and Felderman tested the series
solution for some cases in which surface heat flux into a semi-infinite solid is known
analytically. They show that when exact values for surface temperature are used in
the series, the series solution is well behaved and fairly accurate. Surface heat flux
values tend to be slightly high, but accuracy improves when smaller time intervals

are used.
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2.5 Comparing the Series Solution Estimate with the Simulated Surface Heat Fluz

The temperatures from the two-dimensional simulation are used in the se-
ries solution to get the series solution estimate for external surface heat flux. The
objective of this analysis is to evaluate the accuracy of the series solution by com-
paring these series solution estimates to the actual, external surface heat flux from

the simulation.

To use the series solution with temperatures from the two-dimensional model,
the series solution must also be non-dimensionalized. Using the non-dimensional
form for the disturbance problem, the non-dimensional series solution is

2 g+° g+ — g+

+J
TAtT)/2 "J+E(J NP+ (T ~g+ 1072

qs‘_de'

(88)

FRONT(

When using the gages in the laboratory, one calculates a single value for the
surface temperature from the change in resistance of the thin-film sensor. When
the temperature is not constant over the front surface of the gage, the temperature
determined from the resistance change of the sensor is some average temperature

of the surface of the gage at the thin film.

A good way to model the process of finding a single average temperature is to
average the nodal temperatures in the region covered by the thin-film sensor. The
average should be a weighted average in which the individual nodal temperatures
are weighted by the fraction of the total surface area of the sensor covered by
each of the nodal regions. For the two-dimensional model, a simplified form of the

weighted average is

1/46%,0 + 2T 021K ngt,
nave N (NDISK + 1/2

The average surface temperatures can then be used in the series solution to find

0+

(89)

the series solution estimate for external surface heat flux.

The surface heat flux value to which the series solution estimate is compared

is the actual average, external surface heat flux from the finite-difference model
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in the region of the heated disk. From Equation (30), the non-dimensional, ex-
ternal surface heat flux at each node in the region of the heated disk during the
disturbance problem is

gt =1-0%, (90)
The average, external surface heat flux is found using Equation (89) and replacing

the nodal temperatures with the nodal surface heat fluxes.

An alternate and equivalent method for finding the average, external surface
heat flux from the finite-difference model is to use the average surface temperatures
from Equation (89) directly in Equation (90). Similarly, an alternate and equivalent
method for finding the series solution estimate is to use the temperatures at each
node in the non-dimensional series approximation to find series solution estimates
for heat flux at each node and then to take a weighted average of these series

solution estimates.

The series solution and finite-difference estimates for external surface heat
flux are compared by finding their difference. The difference in the two estimates is
automatically normalized with respect to the maximum theoretical, external sur-
face heat flux by the non-dimensional form used in the disturbance problem. The
external surface heat flux is maximum if the surface temperature is the undisturbed

initial temperature, T;:

Is.max = dh!rRONT(dTIFRONT -T;) (91)

This maximum, external surface heat flux is 1.0 in non-dimensional terms. Then,
the difference in the non-dimensional series solution and finite-difference estimates
multiplied by 100.00 is also the percent difference of the two estimates relative the

maximum theoretical, external surface heat flux:

Percent Difference = (¢} — ¢ ) x 100.00 (92)

The code used in the analysis to compare the series solution and the finite-

difference estimates for external surface heat flux is given in Appendix D.3.
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III. Check Cases

Check cases on the finite-difference model serve the same purpose that cal-
ibration serves in laboratory experiments. Check cases test the model for gross
errors (i.e. typing errors and other debugging problems) and systematic errors
that result from finite-differencing. The check cases will each be simplified prob-
lems for which an analytical solution exists. As a result, they will check individual
aspects of the model separately. The check cases should ultimately show how ac-
curate the model is for its intended use and in what ways or under what conditions

the model may be inaccurate.

The check cases for the finite-difference model are divided into three cate-
gories. The first two are steady-state cases for one-dimensional heat transfer in the
axial direction and then the radial direction. The third catagory includes transient
cases for one-dimensional heat transfer in the axial direction only. The steady-state
cases primarily check the accuracy of the spatial derivatives in each of the two di-
rections. The accuracy to which the solutions converge on the correct steady-state
values should indicate the accuracy of the derivatives. Another check on the ac-
curacy of the derivatives would be to observe the transient temperature profiles
during the steady-state cases to assure that the transient solutions progress logi-
cally toward the steady-state solution. Also, one can check for gross errors simply

by assuring that the heat transfer is indeed one-dimensional at each time step.

The transient cases check the accuracy of the time derivatives in the model
in conjunction with the axial derivatives only. However, if the time derivatives are
accurate for axial heat transfer, then they should also be accurate for radial heat
transfer. The transient cases also check the accuracy of the series solution for sur-
face heat flux when the solid does behave as an initially isothermal, semi-infinite
solid. Although the transient cases could be used to check the accuracy of tran-

sient temperature profiles in the solid, the transient cases were used to check the
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accuracy of only transient surface temperatures since the model is primarily used
to produce transient surface temperatures for the analysis. The series solution was
checked using both the analytical values for surface temperature and the surface
temperatures produced by the finite-difference model in order to distinguish be-
tween inaccuracies inherent to the series solution and those caused by the surface

temperatures produced by the finite-difference model.

3.1 One-Dimensional, Steady-State Heat Transfer in the Azial Direction

The one-dimensional, steady-state check cases for heat transfer in the axial
direction are separated into cases using the preheating problem and cases using the
disturbance problem. To obtain one-dimensional heat transfer in the preheating
problem, the heat generation must be uniform over the front surface. Uniform
surface heat generation is obtained by making the heated disk as wide as the
cylinder and by using the single-material problem only. The check cases for the
preheating problem include cases in which the Biot number at the back surface is

either zero or non-zero.

One-dimensional heat transfer can be obtained in the disturbance problem
using either uniform surface heat generation or no surface heat generation. When
surface heat generation is absent, heat transfer will be one-dimensional for both
the single-material problem and the two-material problem with property ratios
of unity. Because the results for the two problems are identical, only the results
for the single-material problem are shown. The check cases for the disturbance
problem include cases in which surface heat generation is either uniform over the
surface of the cylinder or absent and in which the Biot number at the back surface

is either zero or non-zero.

The analytical solutions for one-dimensional, steady-state heat transfer in
the axial direction were determined using thermal networks developed from the

electrical analogy [4:pp.64-65]. For one-dimensional, steady-state heat transfer in
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the axial direction, Equation (3) reduces to

2 (%) =0 -

Heat flux is constant because the temperature gradient is constant. When the tem-
perature gradient is constant, both the temperature gradient and the temperature
profile through the solid are completely specified by the temperatures at the front
and back surfaces. Then, for one-dimensional, steady-state heat transfer in the ax-
ial direction, the following system of simultaneous equations completely specifies

the analytical solution:

(Ts - Tb)

, = k=)
q I (94)
% = heponr(Tirnonr — Ts) + Ggen (95)
® = hBACK(Tb - TIBACK) (96)
9: = 9 = @ (97)

The simultaneous equations governing one-dimensional, steady-state heat
transfer in the axial direction are similar to equations governing current flow in
electrical networks. Therefore, one can apply the mathematics used with electric
circuits to analyze the heat transfer. In the electical analogy. heat flux is analogous
to current density, and temperature difference is analogous to voltage difference.
Nodes in the thermal network represent positions whose temperatures appear in
the simultaneous equations. The four nodes in the thermal networks for the check
cases represent the external fluid at the front and back surfaces and the front and
back surfaces of the solid itself. Equation (97) is a statement of energy balance for
the front and back surfaces of the solid. It is analogous to a statement of Kirch-
hoff’s current law at the nodes corresponding to the front and back surfaces of the
solid. Equations (94)-(96) are thermal analogies to Ohm’s law from which thermal

resistances for convection at the front and back surfaces and conduction through
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. the solid can be defined as follows:

1
(Rl,corw)pgonr = h (98)
FRONT
1
(R‘vCO"V)BACK = h (99)
BACK
L
Rt,cond = 'E (100)

The heat generation on the front surface is modeled as a constant current into the

network at the front surface.

To use the electrical analogy with the finite-difference model, non-dimensional
thermal resistances and surface heat generation are determined by non-dimension-
alizing the terms in Equations (94)-(97). Non-dimensional thermal resistances,
surface heat generation and fluid temperatures for use in the preheating and dis-
turbance problems are summarized by Table 1. To help visualize the thermal
networks, the initial temperature, T}, can be defined as a ground potential from

‘ which all other potentials are referenced.

Results for two cases, one a preheating problem and the other a disturbance
problem are shown in Figures 9 and 10. The figures include a diagram of the
corresponding thermal network for the conditions of the check case. The preheating
problem shown in Figure 9 uses Biot numbers of 1.0 for the front surface and 0.5 for
the back surface. The disturbance problem shown in Figure 10 uses Biot numbers
of 0.5 for the front surface and zero for the back surface and a non-dimensional
surface heat generation of 0.2. The analytical solution for this case is independent
of the Biot number on the front surface. All cases used a non-dimensional tie step
of 0.004 and a non-dimensional step size of 0.1 in the axial direction. Results for the
other preheating problems and disturbance problems are given in Appendices B.1.1

and B.1.2, respectively.

The finite-difference model requires a tolerance for use in the convergence

‘ criterion for all the steady-state problems. Section 2.3.7 explains the convergence
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Table 1. Summary of Non-Dimensional Terms in the Electrical Analogy

Preheating Problem

Disturbance Problem

o T-T T-T.
(qg/Pthozvr) (dT/FRONT - T,)
q* - :
4 dhraour(dTeronr -T)
+ h L . h L .
Ry cond Bﬁfdz_ = pBirronr . PRZNT = 4Birponr
(R:.‘ccnv FRONT 1 1
(R?' oact PBiPRONT dBiFRONT
,conv 0y « s o
PBzaACI\‘ dBy e
q+ 1 qs/dhrnom- = -
gen (deFRONT - Tt) '
+
elrnmvr 0 1
+
GIBACK 0 0
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criterion used in the model. The finite-difference model converges when the rate
of change becomes small rather than when the error in the steady-state solution
becomes small. As a result, the proximity of the transient solution to the true, an-
alytical, steady-state solution when the model converges varies with the conditions
as well as with the tclerance used in the convergence criterion. The steady-state
check cases used a tolerance of 0.01 in the convergence criterion (see Section 2.3.7).
For all check cases in the axial direction, a tolerance of 0.01 in the convergence cri-
terion caused the transient solution to converge within 2 percent of the steady-state

solution.

The two cases shown in Figures 9 and 10 were run with different values for the
tolerance in the convergence criterion to demonstrate that the transient solutions
do progress logically towards the steady-state solution. Figures 11 and 12 show the
results. Also, the heat transfer in all cases was indeed one-dimensional indicating

that there probably are no gross errors in the derivatives for the axial direction.

3.2 One-Dimensional, Steady-State Heat Transfer in the Radial Direction

There are four cases for one-dimensional, steady-state heat transfer in the
radial direction. To obtain one-dimensional heat transfer in the radial direction,
the heat flux across the front and back surfaces must be set to zero by setting
the Biot numbers and the surface heat generation equal to zero. Because surface
heat flux is zero, the resulting nodal equations in both the preheating and the

disturbance problems are the same.

Both the single-material and the two-material problems produce one-dimen-
sional heat transfer in the radial direction. For simplicity, property ratios of unity
were used in the cases run on the two-material problem. Because of the way
in which the radial dimension is non-dimensionalized, the results for the single-
material problem and the two-material problem are different. Therefore, results

for both problems are given.
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The analytical solutions for one-dimensional, steady-state heat transfer in
the radial direction were determined by solving the differential equation. For one-
dimensional, steady-state heat transfer in the radial direction, Equation (3) in

non-dimensional form reduces to

1 0 [ ,06*
;I—a-;-; (T E‘:) =0 (101)
Integrating the equation twice yields
06t Gy
ot T+ (102)
gt = Cl ln(r+) + C2 (103)

where C; and C; are constants whose value depends on the boundary conditions.

When the inner-radial boundary condition is the symmetry condition of
Equation (8), C; is equal to zero. When the inner-radial boundary condition
is a specified temperature, it is necessary in general to specify the temperature at
an inner radius other than zero, so one or more of the inner-radial nodes must be
maintained at a constant temperature. The analytical solution for the rest of the
model is then equivalent to the solution for heat transfer in a hollow cylinder with
a specified temperature at the inner radius. Heat transfer in a hollow cylinder with

inner radius

Rt = 1.5Ar"

INNER

is simulated by equating the temperature of the first two radial nodes to a con-
stant value. Because their temperatures are held constant, the nodal equations for
these first two radial nodes are not used. Therefore, the check cases which spec-
ify a temperature for the inner-radial boundary condition do not check the radial

derivatives for the nodal equations on the centerline.

The first radial check case checks the radial derivatives for nodes on the
centerline by using the symmetry condition for the inner-radial boundary condition.

The next three radial check cases check the three limiting cases for the outer-radial
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boundary condition. Table 2 summarizes the boundary conditions and analytical
solutions for the four one-dimensional, steady-state check cases for radial heat

transfer.

For each check case using the single-material problem, the non-dimensional
radial step size was 0.1. For each check case using the two-material problem,
the non-dimensional radial step size was 0.2 and the non-dimensional geometry
parameter, R, ,x/R.,,, was 2.0. All cases used a total of eleven nodes in the
radial direction, a non-dimensional time step of 0.003 and a tolerance of 0.01.
Table 3 summarizes the analytical solutions for each of the radial check cases for

both the single-material and two-material problems.

Figure 13 shows the results for the second check case using the single-material
problem. The tolerance used in the convergence criterion was again varied to
demonstrate that the transient solution does progress logically toward the steady-
state solution, and this result is shown in Figure 14. The results for the other
check cases using the single-material and two-material problems are given in Ap-
pendices B.2.1 and B.2.2, respectively. In the steady-state cases for heat transfer
in the radial direction, some of the solutions converged farther from the true steady
sta.e solution than others. In general, cases in which heat flows radially outward
seem to have a much slower rate of change so that the transient solution converges
farther from the true steady-state solution. Cases using the two-material problem
also generally converged farther from the true steady-state solution. Nevertheless,
the transient profiles do progress logically and eventually converge on the steady
state solution. The heat transfer was indeed one-dimensional in each case showing

that there probably are no gross errors in the radial derivatives.

3.8 One-Dimensional, Transient Heat Transfer in the Azial Direction

Three cases for one-dimensional, transient heat transfer were used to check

the finite-difference model and the series solution. The transient check cases only

95




UolAIL(] [RIPERY Y} UL Iajsured],
Yedy 97e1S-Apesig 10} suolnjog [ed[euy pue suoljipuo)) Arepumog g J[qel

' XVN
x«.ﬂmw S S ...._-zz.“.mN 10} Azwzzmﬂ\mﬂtmvmzw:_ . 1 = ( <+- = +.&+m
¥INNI, — - i = 46 = ("y = ,4) b 9883
S 4450105 0 0 = (34 = 4440
XVHN. . — — HANNI (YINNDy 1 XY My ) 0 = Ax«.zt = ,4),0
du/ T + = +4)4
+ >4t > +¥ 1% (77 4 - =59 YINNI € osed
MHIZ.NMN <V| 4+ W 0 30} 1 1 = A +~N = +Lv+%

56

47, :
=44
* Atﬁ

XS 4503 1=(,4)70 0= 40P g eseD
.H = AHQZZ.N.MN —_ +Lv+%
1 = Ak:..q.mw = +.&+e
WA S 450100 1=(44)%0 outAtﬁ L ese)
O = ——
+0r |
uonnjos |eopRAjeuy suoljpuo) Asepunog




YedH 310} sase) o9y 9ye3G-Apes§ AYj Ul pasn suoynio§ [ednjhfeuy g a[qe],

UOr}231L(] [eIPRY 92U} Ul I3jsuel],

02> 445 0g a0 {Efi-pel W | 0TS wS e et |
- - = = ese
08" > 445 0 40) of ° GT'S 445 039 o[ VP
oy = < noe (oe)u 1S L4 S e Jo (s1)uy
025> 44> 08 19 Ggw=(,4 " 01> 44> 8T 1% T "
= - = ese
08 S 44> 019 1 +6 o SU'>44>010 T ¥ € 0
025 4435010 T=(,4)%9 015 4250108 1= (4450 Z e88)
02> 445019 1=(44)%0 015 44>0100 1=(,4)50 } 988D
00°Z 00’1 !
ot St :mzz.h@
oz’ o’ +4V

We|qoid |8}401BN-O0M )

wejqoid jepsejen-eybuls

s'

97




Single-Material Problem: ¢}, vs. rt
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Figure 13. Sample Result for Steady State Heat Transfer in the Radial Direction
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Single~Materlal Problem: 6%, vs. r+
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Figure 14. Sample Result for Steady State Heat Transfer in the Radial Direction

with Different Values for the Tolerance
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include problems with axial heat transfer. This should be sufficient since both the

axial and radial derivatives proved accurate for steady-state heat transfer.

The transient cases were used in the following ways:

o To check the accuracy of the finite-difference model in producing non-dimen-

sional surface temperatures and surface heat flux values.

o To check the accuracy of the non-dimensional series solution for cases in

which the solid does behave as an initially isothermal, semi-infinite solid.

o To investigate the problems encountered when using the non-dimensional
surface temperatures produced by the finite-difference model in the series

solution.

¢ To determine suitable spatial and time steps to get sufficient accuracy from

the model in the analysis and to estimate this accuracy.

Since heat transfer is one-dimensional in these check cases, it is not necessary
to average surface temperatures or surface heat fluxes. Nevertheless, each case
averaged the temperatures and heat fluxes of the first three radial nodes on the
front surface in order to check the equations for finding average surface temperature
and heat flux. The simulation of each case on the finite-difference model used non-
dimensional spatial step sizes of 0.1 and three different non-dimensional time steps

of 0.004, 0.001 and 0.0005.

The sections that follow describe each of the transient check cases giving
the analytical solution for each and showing how each was implemented on the
finite-difference model. The final section summarizes the results from the transient
cases. Graphs from the first transient check case—the semi-infinite solid with
convection—are used to illustrate points in the discussion. Graphs for the other

two transient check cases are given in Appendices B.3.1 and B.3.2.
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3.8.1 The Semi-Infinite Solid with Convection One-dimensional heat trans-
fer in a semi-infinite solid with constant external fluid temperature and convection
coeflicient is readily simulated using the finite-difference model for the disturbance
problem with a fully-insulated, outer-radial boundary. Figure 15 illustrates the
conditions used in the two-dimensional model to simulate this transient solution.
The parameters v, 7 and ¢Bi ., are set to zero. Both the single-material problem
and the two-material problem work. However, since both produce identical results,

the results from only one are shown.

The cylinder will behave as a semi-infinite solid only for times less than the
time it takes the leading edge of the thermal disturbance to travel the length of
the cylinder. Using the approximation given by Equation (2), the simulation for

this transient check case should only be valid for non-dimensional times less than
tt ~ — =0.0625 (104)

The check case was run slightly longer to non-dimensional time of 0.075.

The analytical solutions for non-dimensional surface temperature and surface

heat flux for this transient check case are [4:pp.202-206]

6%, = 1—exp((Bi)’t*)erfc((Bi)+"?) (105)
¢*, = 1-6%, = exp ((Bi)t*) erfe ((Bi)t*'/*) (106)

where B: is the Biot number at the front surface in the simulation, which was

chosen to be 2.0.

3.8.2 The Semi-Infinite Solid with Constant Surface Heat Fluz One-dimen-
sional heat transfer in a semi-infinite solid with constant surface heat flux is simu-
lated by a modified version of the finite-difference model for the preheating problem
with a fully-insulated, outer radial boundary. By setting ,Bi,,,~, €qual to zero

and the ratio R, /R.,, equal to one, the heat flux over the front surface of the
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Figure 15. Simulating a Semi-Infinite Solid with Constant External Fluid Tem-
perature and Convection Coefficient
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cylinder is constant and equal to the surface heat generation:

g =3, (107)

Because both the fluid temperature and the convection coefficient are not defined
in the analytical solution for this case, the non-dimensional form of the dependent

variables must be changed to

T-T,
++ i
A= (108)
gt = qi (109)
g

The non-dimensional equations using this non-dimensional form for the dependent
variables are again identical to the previous equations except in the boundary
conditions for the front and back surfaces. The nodal equations for nodes on the
front and back surfaces can be easily modified to use this non-dimensional form in

the finite-difference model.

Figure 16 illustrates the conditions used in the two-dimensional model to
simulate this transient solution. The Biot number for the back surface is set to
zero. Because the simulation uses surface heat generation, only the single-material
problem will produce one-dimensional heat transfer. The simulation is again only
valid for times less than the time it takes the leading edge of the disturbance to
travel the length of the cylinder. This transient check case was also run to 1. -

dimensional time of 0.075.

The analytical solutions for non-dimensiona! surface temperature and surface
heat flux using the moditied, non-dimensional form for the preheating problem are
(4:pp.202-206]

9+ 1/2
++ o °

1 (111)

++
Qs

Because the surface heat flux is inherent in the finite-difference mc.del, it is not

necessary to check the finite-difference model’s estimate for surface heat flux. This
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Semi-Infinite Solid Two-Dimensional Model
(Single-Material Problem Only)
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Figure 16. Simulating a Semi-Infinite Solid with Constant Surface Heat Flux
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. transient check case is still useful, however, for checking the accuracy of the finite-
difference model’s estimate for surface temperature and the accuracy of the series
solution’s estimates for surface heat flux using both the analytical surface temper-

atures and the surface temperatures produced by the model.

9.9.9 The Plane Wall with Convection One-dimensional heat transfer in

a plane wall with constant external fluid temperature and convection coefficient

on both sides is also easily simulated using the disturbance problem with a fully-
insulated, outer-radial boundary condition. The parameter v is set to zero, while
the parameter 7 is set to one. The Biot numbers for the front and back surfaces
must be equal. Because surface heat generation is not used, both the single-
material and two-material problems work for this transient check. However, the
results are again identical, so the results from only one are shown. Figure 17 illus-
trates the conditions used in the model to simulate one-dimensional heat transfer

in a plane wall with convection.

Although the simulation for the heat transfer in a plane wall is valid for all
time, the cylinder ceases to behave as a semi-infinite solid for times greater than
the time it takes the leading edge of the disturbance to reach the midplane of the
wall:

tt =~ 1/64 =~ 0.016 (112)

For times greater than this, then, one can not use this transient check case to
check the accuracy of the series solution. However, this transient check case is still
useful for checking the accuracy of values for surface temperature and heat flux
produced by the finite-difference model. The transient check case using the plane

wal] solution was also run to non-dimensional time of 0.075.

The analytical solutions for the plane wall are infinite-series solutions. The
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solutions can be approximated by the the first four terms to give [4:pp.183-187]

4
6f = 1-) Ciexp (—4(,2t+) cos ((;) (113)
=1
4
¢t = 1-6=) Ciexp (—4(,2t+) cos ((1) (114)
=1

where the coefficient C; is given by

Cr - 4sin ((;)

"7 20 + sin (20) (115)
and the constants (; are the I*! eigenvalues of the characteristic equation
2¢itan () = B (116)

Bi is the Biot number for both front and back surfaces. For the Biot number of

2.0 used in the simulation, the first four eigenvalues are

¢, = 0.8603 rad (117)
(2 = 3.4256 rad (118)
(s = 6.4376 rad (119)
¢ = 9.5293 rad (120)

For non-dimensional time of 0.002, the magnitude of the fourth term in the series
is 0.0104. Since this is an alternating series, the error in the solution using the
truncated series is less than 0.0104 in magnitude for all non-dimensional times

greater than 0.002.

3.8.4 Results from the Transient Check Cases Because the first check case
is similar to the disturbance problem of the analysis, the model should behave
similarly in the analysis as in this first check case. For this reason, the accuracy
of the model in the first check case should give a good indication of the accuracy
of the model in the analysis. The one major shortcoming is the fact that this first

check case does not exercise the radial derivatives. Nevertheless, the results from
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the first transient check case are given in this section, and from these results an
estimate of the expected accuracy of the model in the analysis is determined. The
graphs of the results for the second and third transient check cases are given in
Appendices B.3.1 and B.3.2, respectively. For the most part, the trends in the
accuracy seen in the first check case are also seen in the other two transient check

cases.

Figure 18 shows the surface temperatures produced by the finite-difference
model in the first check case using values of 0.004, 0.001, and 0.005 for the non-
dimensiona. time step. There are some problems with the surface temperatures
produced by the finite-difference model. First of all, as the non-dimensional time
step is reduced, the surface temperatures converge on values lower than the analyt-
ical values. This error in the surfuce temperatures produced by the finite-difference
model is most likely related to the magnitude of the temperature gradients near
the surface. The error is greatest for small times when the temperature gradi-
ents are largest. Nevertheless, the surface temperatures produced by the model
are quite accurate if sufficiently small non-dimensional spatial and time steps are
used. Using spatial steps of 0.1 and a time step of 0.001 or less, the finite-difference
estimates for surface temperature are within 2.7 percent of the analytical value at
non-dimensional time of 0.01 and within 0.03 percent of the analytical value at

non-dimensional time of 0.05.

The rate of change of surface temperature with respect to time as seen by the
slope of the curves in Figure 18 is severely affected by these seemingly small errors
in the surface temperatures produced by the model. For small time, the slope of
the curves for the surface temperatures produced by the model is significantly lower
than in the analytical solution. For larger times, the slope is slightly higher. This
error in the rate of change of surface temperature is import:.at because the series
solution uses the rate of change of surface temperature rather than the surface

temperatures themselves to determine the surface heat flux.
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Figure 18. Finite-Difference Model Values for 8} vs. t* for the Semi-Infinite Solid
with Convection
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Stability and oscillation are also a concern with the explicit finite-difference
model. Oscillations can have a significant effect on the results for surface heat flux
using the series solution because the oscillations cause large errors in the calculated
rate of change of surface temperature. Figure 18 shows oscillations in the finite-
difference estimates for surface temperature using a non-dimensional time step of

0.004.

Oscillations are a more likely problem for small time when the curvature of
the surface temperature function of time is greatest. The oscillations are caused by
the over prediction in the explicit scheme as described in Section 2.3.6. The non-
dimensional surface temperature at the end of the first time step is grossly over
predicted because the non-dimensional time step is too big to accurately follow
the solution when the rate of change in slope is high. The over predicted surface
temperature at the end of the first time step causes the rate of change for the next
time step to be low, which in turn causes the surface temperature at the end of
the following time step to be under predicted. The process repeats itself a few
times until the oscillations die out when the curvature of the surface temperature
function becomes small enough for the finite-difference model to follow the solution
with the given time step. As is readily seen in Figure 18, the oscillations cause
much greater error in the slope of the curve for surface temperature than in the
actual values for surface temperature. The time step needed to prevent oscillations

depends on the conditions in the simulation and the spatial step sizes being used.

Because of the way in which the disturbance problem is non-dimensionalized,
the accuracy of the finite-difference estimates for surface heat flux depends solely on
the accuracy of the surface temperatures produced by the model (see Equation (90)
and the discussion in Section 2.5). Figure 19 shows the finite-difference estimates
for surface heat flux from the first transient check case using non-dimensional
time steps of 0.004, 0.001, and 0.0005. The finite-difference estimates tend to be

high since the surface temperatures tend to be low. Also, if the non-dimensional
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Figure 19. Finite-Difference Estimates for g} vs. t* for the Semi-Infinite Solid
with Convection
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time step is too big, the finite-difference estimates for surface heat flux oscillate
about the analytical values. Nevertheless, the accuracy is quite good when using
small enough step sizes. Using non-dimensional spatial step sizes of 0.1 and a non-
dimensional time step of 0.001 or less, the finite-difference estimate for surface heat
flux is within 0.7 percent of the analytical value at non-dimensional time of 0.01

and within 0.02 percent of the analytical value at non-dimensional time of 0.05.

Errors in the series solution for surface heat flux when using surface tempera-
tures produced by the finite-difference model may be due either to the inaccuracies
in the surface temperatures produced by the model or to the inherent inaccuracy
of the series solution. To distinguish between the two causes, the series solution
for surface heat flux was run using both the analytical values for surface temper-
atures and the surface temperatures produced by the finite-difference model. It
is important to ensure that large errors in the series solution during the analysis
are not caused by inaccuracies in the surface temperatures produced by the finite-
difference model. If this is the case, then the finite-difference model does not model
the laboratory experiment with sufficient accuracy, and the results are meaning-
less. Running the series solution with the analytical values for surface temperature
is also helpful for evaluating any inherent inaccuracy in the series solution. The
series solution is not an exact solution, and its accuracy depends on the time step

used in the series.

Figure 20 shows the series solution estimates for surface heat flux in the first
transient check case when using analytical values for surface temperature. Because
the approximation in the series solution comes from assuming a piecewise linear
function of time for the surface temperature, the series solution is more prone
to error at small time when the curvature in the surface temperature function of
time is larger. Since more recent terms in the series solution are weighted more
heavily, the series estimate becomes increasingly :..ore accurate for larger time as

the curvature in the surface temperature function of time in this transient check
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case decreases. For cases in which the surface temperature rises monotonically such
as this, the series solution will tend to overestimate surface heat flux. Overall, the
series solution is quite accurate if a small enough time step is used in the solution.
Using a non-dimensional time step of 0.001 or less in the series solution gave series
solution estimates for surface heat flux within 0.6 percent of the analytical value
at non-dimensional time of 0.01 and within 0.05 percent of the analytical value at

non-dimensional time of 0.05.

There are, however, significant problems with the series solution when us-
ing surface temperatures produced by the finite-difference model. These errors
are caused by inaccuracies in the surface temperatures and not by the series so-
lution. The error in the series solution estimate is significant even though the
error in the value of the surface temperatures is small because the series solution
uses the rate of change of surface temperature to evaluate surface heat flux. In
comparison, the finite-difference estimates for surface heat flux do not have the
same problems because the finite-difference estimates use the actual value of the
surface temperature rather than the rate of change of surface temperature. First
of all, the rate of change of surface temperatures produced by the finite-difference
model is low for small time, so the series estimates are also initially low. For larger
times, the rate of change is slightly high which may cause the series solution to
be higher than it would be otherwise. However, any over prediction in the series
solution for larger times may be offset by the initial under prediction as is the case
in the second transient check case (see Figur: 57 in Appendix B.3.1). Secondly,
if the non-dimensional time step used in the model is too big so that oscillations
are present in the surface temperatures, the series solution estimates can oscillate

scverely due to the extreme oscillation in the rate of change of surface temperature.

Figure 21 shows the series solution estimates for surface heat flux when us-
ing the surface temperatures produced by the finite-difference model in the first

transient check case with non-dimensional time steps of 0.004, 0.001 and 0.0005 in
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both the finite-differnce model and the series. Even with a non-dimensional time
step of 0.0005, the initial under prediction in the series solution is severe. A severe
initial under prediction occurs in all three transient check cases (see Figures 57
and 61 in Appendices B.3.1 and B.3.2, respectively). However, by non-dimensional
time of 0.01, the series solution regains its accuracy. Using non-dimensional spatial
step sizes of 0.1 in the finite-difference model and a non-dimensional time step of
0.001 or less in both the finite-difference model and the series solution gave series
solution estimates for surface heat flux within 2.7 percent of the analytical value
at non-dimensional time of 0.01 and within 0.7 percent of the analytical value at

non-dimensional tnuc of 0.05.

In summary, the finite-difference model produces surface temperatures with
good accuracy usin~ uon-.iimensional, spatial step sizes less than or equal to 0.1
and a non-dimcnsioral time step less than or equal to 0.001. The series solution
is also quite accurate given exact data when the non-dimensional time step in
the series is less than or equal to 0.001. However, the series solution for surface
heat flux using the surface temperatures produced by the finite-diffence model
does have some problems. For small times, the series solution under predicts the
surface heat flux due to the large error in the initial rate of change of the surface
temperatures produced by the finite-difference model. The series solution can
also have significant errors if oscillations are present in the surface temperatures
produced by the finite-difference model. Nevertheless, the series solution for surface
heat flux using surface temperatures produced by the model is accurate for non-
dimensional times greater than 0.01 if non-dimensional spatial step sizes less than
or equal to 0.01 are used in the model and non-dimensional time steps less than or

equal to 0.001 are used in both the model and the series.

Accurate results in the analysis require accurate results for both the finite-
difference estimates for surface heat flux and the series solution estimates for surface

heat flux using the surface temperatures produced by the finite-difference model.
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For non-dimensional times greater than 0.01 in the first transient check case, the
finite-difference estimates are within 0.7 percent of the analytical values for surface
heat flux and the series solution estimates are within 2.7 percent of the analytical
values when using non-dimensional spatial step sizes of 0.1 in the finite-difference
model and non-dimensional time steps less than or equal to 0.001 in both the model
and the series. To be conservative, one can assume that these percentages apply to
the maximum non-dimensional, external surface heat flux of 1.0. Then, the non-
dimensional error in the finite-difference estimate for surface heat flux is always less
than 0.007 and the non-dimensional error in the series solution estimate is always
less than 0.027. This error estimate is more conservative for longer times since the
error decreases with time. It is important to note that the transient check cases
did not employ the radial derivatives. One would expect the radial derivatives to
add some additional error to the results in the analysis. Then, a reasonable and
conservative estimate of the expected error in the percent difference used in the
analysis, (g7, —g}, )x100.00 . for non-dimensional times greater than 0.01 would
be 4.0. Figure 22 shows the finite-difference and the series solution estimates for
surface heat flux using the surface temperatures produced by the finite-difference
model in the first transient check case with a non-dimensional time step of 0.0005

in both the model and the series.

The transient check cases also point out the need to collect temperature data
carefully when using the series solution on experimental data. The series solution
is extremely sensitive to eriors in the data for surface temperatures because the

series solution uses the rate of change of temperature to evaluate surface heat flux.
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IV. Analysis and Results

This analysis investigates the effect of various parameters in the two-dimen-
sional model on the accuracy of the series solution for the average surface heat
flux in the region of the heated disk. Because the total number of parameters in
the model is large, the analysis is limited by allowing only some of the parameters
to vary and setting the others constant. A limited range or number of values is

investigated for each of the parameters which is allowed to vary.

Section 2.2 lists the non-dimensional parameters in the two-dimensional mod-
el. Four additional non-dimensional parameters occur in the finite-difference model.
They are the tolerance used in the convergence criterion for the preheating preblem

and the three non-dimensional step sizes; Azt, Art and Att.

Some of the parameters are set constant for all runs. The Biot numbers at the
front and back surfaces during the preheating problem are set to 0.01. This value
is chosen using a typical convection coefficient for free convection of 4.0 W/m? - K
and typical values for L and k from References [3] and [7:p.672], respectively. The
parameter 7 in the disturbance problem is set to zero, and the Biot number at
the back surface during the disturbance problem is kept at 0.01. Setting 7 to
zero and keeping ¢B1i,,., equal to 0.01 implies that the conditions at the back of
the test specimen remain the same for both the preheating and the disturbance
problems and are typical conditions for free convection. Only two values, 0.1 and
1.0, are used to investigate a reasonable range for the Biot number at the front
surface during the disturbance problem. Because ,Bi,, ., is held constant, the
parameter 3 equivalently describes the Biot number at the front surface during the

disturbance problem when preheating is used.

The transient check cases show that the percent difference, (¢f . — ¢} ) x

100.00 , should be accurate to within 4.0 in the analysis for non-dimensional
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times greater than 0.01 when using non-dimensional spatial step sizes of 0.1 or less
and a non-dimensional time step of 0.001 or less. The spatial step sizes actually
used depend on the value of the geometry parameter R, /R.,,. The geometry
parameter R, ;.. /R.,, is set to 1/6, 1/8 and 1/12 using non-dimensional spatial
step sizes of 0.111 (1/9), 0.083 (1/12) and 0.056 (1/18), respectively. The largest

non-dimensional time step used in any of the runs is 0.001.

The time step required to maintain stability in the finite-difference model
varies bctween runs. In some cases, a time step much smaller than 0.001 is used.
The accuracy of the series soluiion improves when smaller time steps are used in
the series. However, each run uses the temperature values at non-dimensional time
steps of 0.001 in the series solution regardless of the time step used in the finite-
difference model to avoid disturbing the results by varying the time step used in the
series solution. All runs are ended at non-dimensional time of 0.07 since thin-film
gages are generally not used for times longer than the estimated time it takes the
leading edge of a thermal disturbance to reach the back surface of the cylinder,

which is approximately 0.0625 in non-dimensional time (see Equation (2)).

In another attempt to clarify and simplify the analysis, the runs are separated
into groups which isolate the causes of two-dimensional heat transfer. One group
of runs, the adiabatic cases, investigates the effect of localized heat generation and
preheating with no heat flux across the outer-radial boundary of the cylinder. An-
other group of runs, the non-adiabatic cases with no heat generation or preheating,
investigates the effect of allowing heat flux across the outer-radial boundary of the
cylinder in the absence of heat generation or preheating. A third group of runs,
the combined cases or non-adiabatic cases with heat generation and preheating, in-
vestigates the effect of adding preheating and subsequent heat generation to a few

of the runs from the non-adiabatic cases.
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4.1 Adiabatic Cases

The adiabatic cases investigate the effect on the series solution of the two-
dimensional heat transfer caused by heat generation and preheating in the absence
of heat flux across the outer-radial boundary of the cylinder. All runs in the
adiabatic cases use the single material problem with the fully-insulated, outer-radial
boundary condition of Equations (26) and (34). All runs also use the preheating
problem except the few which investigate the effect of heat generation during the

disturbance with no prior preheating.

A number of parameters are allowed to vary for the adiabatic cases. Values
between 0.0 and 0.5 are investigated for the parameter 4. The geometry parameter
L/R.,, is varied between 0.2 and 5.0, while the geometry parameter R, /R.,,
is varied between the three values 1/6, 1/8 and 1/12. The tolerance used in the
convergence criterion for the preheating prcblem is varied between the three values

of 0.5, 0.1 and 0.05; and a few runs do not use any preheating. Finally, all runs
are duplicated using values of 10.0 and 100.0 for the parameter £.

The results from the adiabatic cases show that preheating and subsequent
surface heat generation should have no effect on the results as long as the transients
from the preheating problem are allowed to settle down before beginning the test.
Figure 23 shows the results with the parameter v varying and using a value of 10.0
for B, 1/8 for R,,,,,./R.y,, 1.0 for L/R_,, and 0.1 for the tolerance. The results
seem to show a trend in the series solution to overestimate slightly with increasing
value of 7. However, the percent differences are less than the expected error in
the model. Using a value of 0.5 for v, the percent difference is between 0.5 and
0.7 between non-dimensional time of 0.01 and 0.07, and the percent difference is
less using smaller values for y. When a larger value for 8 is used, the percent
difference is larger but still less than the expected error in the model. Figure 63 in
Appendix C.1 shows the results with vy varying using a value of 100.0 for 4. The

percent difference using a value of 0.5 for v increases to between 2.0 and 3.C when
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B is 100.0.

Although heat generation does not affect the results when the transients from
the preheating problem are allowed to settle down, the effect of heat generation is
large il the preheating problem is not run. Figure 24 shows the resuits with the
tolerance for the convergence criterion of the preheating problem varying and using
a value of 10.0 for 3, 1/8 for R,,,,./R.,,, 1.0 for L/R_,, and values of 0.05 and
0.2 for v. Tolerances of 0.5, 0.1 and 0.005 cause the preheating problem ¢o on-
verge at non-dimensional times of 0.118, 2.600 and 10.326, respectively. Changing
the tolerance between these three values cause only slight changes in the percent
differences which remained below the expected error of the model. However, there
is significant overestimation when heat generation is used with no preheating. The
percent difference when using a value of 0.2 for ¥ and without preheating is be-
tween 6.0 and 10.0. Figure 64 in Appendix C.1 shows even greater overestimation

when using a value of 100.0 for 5.

The overestimation in the series solution caused by not allowing the transients
to settle down during the preheating problem stands to reason. The overestima-
tion results from greater increases in surface temperature than would be present
from the external disturbance alone since the disturbance from the heat generation
has not established itself yet. The series solution attributes the greater increase in
surface temperature to a greater external surface heat flux than is actually present.
It is likely, however, that if one used a thin-film gage for very short times, i.e. only
as long as the assumption of one-dimensional heat transfer was valid, and were
able to expose the system to the disturbance at the same time as turning on the
instrumentation, one could correct the series solution for the overestimation caused
by the heat generation. For one-dimensional heat transfer, the disturbance in the
region of the heated disk would be composed of two separate disturbances, the
surface heat generation and the external disturbance. Superposition holds because

the equations are linear. Therefore, the resulting surface temperature changes are
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the sum of the changes due to the two separate disturbances. Given the total sur-
face temperature changes, the series solution should accurately estimate the total
surface heat flux and could be corrected to yield the heat flux due to the external
disturbance alone by subtracting the value of the surface heat generation. For
longer times, one can not make this correction because the heat transfer from the
localized surface heat generation becomes two-dimensional. Even though super-
position still holds, the correction needed for the series solution will be something

less than the value of the surface heat generation.

Varying the parameter L/R..,, does not affect the results. Figure 25 shows
results with the parameter L/R,,, varying using a value of 10.0 for 3, 1/8 for
Ry sx/Reyy, 0.1 for the tolerance and values of 0.05 and 0.2 for 4. The percent
difference is small and less than the expected accuracy of the model. Figure 65 in

Appendix C.1 shows similar results using a value of 100.0 for 3.

Varying the parameter R, ../R_,, also does not affect the results. Figure 26
shows the results with the parameter R,,.,./R.,, varying using a value of 10.0
for 8, 1/8 for R,,,,./R,,, 0.1 for the tolerance and values of 0.05 and 0.2 for ~.
The percent difference is again very small and less than the expected error in the
model. Figure 66 in Appendix C.1 shows similar results using a value of 100.0 for
B. The percent differences are larger but still less than the expected accuracy of

the model.

4.2 Non-Adiabatic Cases with No Heat Generation or Preheating

The non-adiabatic cases with no heat generation or preheating investigate
the effect on the series solution of the two-dimensional heat transfer which results
from allowing heat flux across the outer radial boundary of the cylinder in the
absence of heat generation or preheating. The preheating problem is not used for

these cases, and the parameter 7 is set to zero.

The effects of allowing heat flux across the outer-radial boundary of the
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‘ cylinder are bounded by the effects seen in the limiting cases. Each of the three
limiting cases for heat flux across the outer-radial boundary of the cylinder is
implemented using the single-material problem. The limiting case for heat flux
out across the outer-radial boundary of the cylinder uses Equation (35) for the
outer-radial boundary condition on the cylinder. The limiting case for heat flux in
across the outer-radial boundary of the cylinder uses Equation (36) for the outer-
radial boundary condition on the cylinder. The case for no heat flux across the

outer-radial boundary of the cylinder is the adiabatic case.

In the absence of heat generation and preheating, the heat transfer in the
adiabatic case will be one-dimensional, so the series solution should be the true

solution for times up to the time when the leading edge of the external disturbance

reaches the back of the cylinder. The only approximation in the series solution for
the adiabatic case with no heat generation or preheating is caused by assuming
the surface temperature to be a piece-wise linear function of time (see Section 2.4).
Figures 23 and 63 show that using a value of 0.0 for v in the adiabatic case does
. indeed yield a percent difference very near 0.0. Thus, the percent difference due
to any intermediate condition causing heat flux out across the outer-radial bound-
ary of the cylinder will be bounded by zero and the percent difference found in
the limiting case for heat flux out. Likewise, the percent difference due to any
intermediate condition causing heat flux in across the outer-radial boundary of the
cylinder will be bounded by zero and the percent difference found in the limiting

case for heat flux in.

Two intermediate cases for heat £ux across the outer-radial boundary of the
cylinder are also investigated. Both use the two-material problem with a geometry
parameter R,,,,/R.,, equal to 2.0. The intermediate case for heat flux out models
teflon as the insulating material in a test specimen. The property ratios k’/k and

(pcy)/(pcy)’ are .33 and .49, respectively, (7], [4:p.688] and [6:p.608]. The boundary
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condition on the outer-radius of the surrounding material for this case is
6t(rt=2.0)=0 (121)

The intermediate case for heat flux in across the boundary uses property ratios of
1.0 and 6.0 for k'/k and (pc,)/(pcyp)’, respectively. The boundary condition on the

outer-radius of the surrounding material for this case is
a6+
a?> r+=20 =0 (122)

Because the non-adiabatic cases with no heat generation or preheating do
not use the preheating problem, the parameter § does not really apply. Instead,
values of 0.1 and 1.0 are used for the parameter 4Bi, .., the Biot number at the
front surface. The geometry parameter L/ R, is varied between 0.2 and 5.0, and
the geometry parameter R, ,./R.,, is varied between the three values of 1/6, 1/8

and 1/12.

Figures 27, 28, 29 and 30 show the results for the limiting case for heat flux
out, the intermediate case for heat flux out, the limiting case for heat flux in and the
intermediate case for heat flux in, respectively, as the geometry parameter L/R,,,
varies using a value of 10.0 for the parameter 3 and 1/8 for the geometry parameter
R,si/Rcy,. Asseen in the results, the series solution underestimates the external
surface heat flux for the cases with outward radial heat flux and overestimates the
external surface heat flux for cases with inward radial heat flux. For all cases,
there is a bounding value for the geometry parameter L/R_,, such that any lower
value for L/R_,, gives a minimal percent difference. For the limiting case for heat
flux out, limiting L/R_,, to 1.0 keeps the percent difference less than 2.0. For
the intermediate case for heat flux out, limiting L/R_,, to 2.0 keeps the percent
difference less than 6.0. For the limiting case for heat flux in, limiting L/R_,, to

0.6 keeps the percent difference less than 5.0. Finally, for the intermediate case for

heat flux in, limiting L/R_,, to 1.0 keeps the percent differnce less than 2.0.
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Figure 27. Results for the Limiting Case for Heat Flux Out Across the Outer-
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Figure 28. Results for the Intermediate Case for Heat Flux Out Across the Outer-
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For values of L/R,,, larger than these bounding values, the percent differ-
ences become large. For the limiting case for heat heat flux out, using a value
of 2.0 for L/R_,,, and 0.1 for 4Bt .4, gives a steadily increasing percent differ-
ence which reaches 30 by non-dimensional time of 0.07. For the intermediate case
for heat flux out, using a value of 4.0 for L/R_,, and 0.1 for 4Bi_ .., gives a
steadily increasing percent difference which reaches 13 by non-dimensional time of
0.07. For the limiting case for heat flux in, using a value of 0.8 for L/k_,, and
0.1 for ¢Bi,4ony Eives a rapidly increasing percent difference which reaches 85 by
non-dimensional time of 0.07. Finally, for the intermediate case for heat flux in,
using a value of 2.0 for L/R_,, and 0.1 for 4Bi, ., gives a steadily increasing
percent difference which reaches 34 by non-dimensional time of 0.07. In all cases,
the error in the series solution increases with time, so one may obtain better accu-
racy with larger values for the parameter L/R_,,, if one is only interested in results
for shorter times. Although the results from the limiting case for heat flux in are
severe, one should note that the conditions which this limiting case model are quite

severe and unlikely to approximate any actual conditions in the laboratory.

For a short time after the disturbance, the heat transfer in the region of
the disk should be approximately one-dimensional. Therefore, the series solution
should theoretically be accurate for short times. Some of the results clearly show
this delay in the onset of error in the series solution. As would be expected, the
delay in terms of non-dimensional time is greater with smaller values of L/R...,,
since the tendency to produce radial gradients is less. As the value of L/R,,,
decreases, the resistance to heat transfer in the radial direction increases relative
to the resistance to heat transfer in the axial direction, so the radial gradients

should be smaller when using smaller values for L/R,.,, .

The trend for the series solution to overestimate or underestimate depend-
ing on the direction of the establishing radial gradients makes sense and can be

explained by examining typical flux plots for the transient heat transfer in the
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cylinder [4:pp.135-137). A flux plot is a network of isotherms and heat flow lines.
The heat flow lines are drawn with arrows to indicate the direction of the heat
flow and temperature gradient. Heat flow lines must always be perpendicular to
isotherms. The area between adjacent heat flow lines is termed a lane. Heat can
be visualized as flowing in these lanes. In a well drawn flux plot, the heat flux

between two adjacent isotherms in a lane can be estimated by

AT
qA;, =~ kz‘a‘ (123)

where ¢ is the heat flux, k is the thermal conductivity, A; is the approximate area
of the lane perpendicular to the heat flow line, AT is the temperature difference
between the isotherms and Ad is the approximate distance between the isotherms.
Heat energy must be conserved, so any heat which does not continue to flow in the
lane will cause the temperature to rise. Figure 31 shows a typical flux plot for heat
transfer in an initially isothermal, semi-infinite solid. In contrast, Figure 32 shows
typical flux plots for heat transfer in the intermediate cases for heat flux out and

heat flux in across the outer-radial boundary.

The series solution uses the time history of changes in the surface temperature
to estimate the surface heat flux. The series solution is accurate only if the changes
in surface temperature that do occur are equal to those that would occur in an
initially isothermal, semi-infinite solid with the same time history of surface heat
flux. For the cases that establish outward radial heat flux, the changes in surface
temperature for any given time history of surface heat flux are less than the changes
in surface temperature that would occur in an initally isothermal, semi-infinite
solid with the same time history of surface heat flux. Given the smaller changes

in surface temperature, the series solution underestimates the surface heat flux.

The trend for surface temperature changes to be less in runs that establish
outward radial gradients can be visualized by examining the typical flux plots.
Figures 31 and 32 show flux plots for heat transfer in a semi-infinite solid and

in the cylinder with outward radial gradients, respectively. As can be seen by
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Figure 31. Typical Flux Plot for Heat Transfer in an Initially Isothermal, Semi-
Infinite Solid
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a. Heat Flux Out Across the Outer-Radial Boundary

EERR

b. Heat Flux In Across the Outer-Radial Boundary

Figure 32. Typical Flux Plots for Heat Transfer in the Intermediate Cases for
Heat Flux Out and In Across the OQuter-Radial Boundary of the Cylin-
der
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the increasing area of the lanes in its flux plot, the heat flux within the solid
with outward radial gradients will be less than the heat flux within the semi-
infinite solid when the same surface heat flux is present in both in accordance
with Equation (123). Then, the temperature changes which result from the same
time history of surface heat flux will be less since smaller temperature changes
are required to establish the heat flux through the cylinder. With inward radial
gradients, the area of the lanes decreases, so the temperature changes will be

greater, and the series solution overestimates.

Figures 67, 68, 69 and 70 in Appendix C.2 show the results for the limiting
case for heat flux out, the intermediate case for heat flux out, the limiting case for
heat flux in and the intermediate case for heat flux in as the parameter L/R,.,,
varies using a value of 1.0 for 4Bi .. instead. The results using a larger value
for 4B,y show the very same trends but with slightly less percent differences.
It must be noted, however, that the dimensional error in the series solution is still
greater for the larger value of 4Bi,,,\, since the percent difference is normalized
with the value of y4Bi ..y, in the denominator. The smaller percent difference
when using the larger value for 4Bi,, ., may be misleading alsoc because of the
way the results are displayed. It is likely that the fractional amount of the true
surface heat flux by which the series solution overestimates or underestimates stays
fairly constant when the value for 4Bt ., varies. The way to show this would be
to evaluate a new percent difference using the finite-difference estimate for surface
heat flux as the normalizing factor. The non-dimensional temperatures at the
front surface in the disturbance problem will tend to increase when using larger
values for 4Bi,poxr, SO NOn-dimensional surface heat flux values decrease. If, in
fact, the series solution errs by a constant fractional amount of the finite-difference
estimate when the value for 4Bt ., changes, then the percent difference is less

for larger values of 4Bi, 4oy Only because the finite-difference estimates for surface

heat fluxes are smaller.
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Figure 33. Results for the Limiting Case for Heat Flux Out Across the Outer-
Radial Boundary with No Heat Generation as R, /R.,, Varies Us-
ing ¢Bi,ponr =1
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Figure 34. Results for the Intermediate Case for Heat Flux Out Across the Outer-
Radial Boundary with No Heat Generation as R,,,./R.,, Varies Us-
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Figure 35. Results for the Limiting Case for Heat Flux In Across the Outer-
Radial Boundary with No Heat Generation as R, /R.,, Varies Us-
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Figure 36. Results for the Intermediate Case for Heat Flux In Across the Outer-

Radial Boundary with No Heat Generation as R, /R,.,., Varies Us-
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The geometry parameter R, /R,,, has little impact on the results. Fig-
ures 33, 34, 35 and 36 show the results as the parameter R, /R,,, varies using
a value of 0.1 for 4Bt oy Varying R, /R, in the absence of heat generation
merely changes the area over which the surface temperature is averaged for use in
the series solution. In all cases except the intermediate case for heat flux out, a
larger value for R, /R.,, produces slightly more error in the series solution. This
trend makes sense since the heat transfer should be more one-dimensional closer to
the centerline of the cylinder and since the radial derivative is zero directly at the
centerline. The impact of varying the geometry parameter R, ;. /R.,, increases
tor larger values of L/R_,, which also makes sense since the radial derivatives are
greater with larger values of L/R,,,. However, it should be noted that the change

in the percent difference as the parameter L/R_,, varies in most cases is less than

CYL
the expected accuracy in the model, so the results are inconclusive. The trends
could be trends in the error equation of the finite-difference model rather than
actual trends in the results. Figures 71, 72, 73 and 74 in Appendix C.2 show the

results as R,/ R;y, vanes using a value of 1.0 for gBi,.,,,. These results are

very similar.

4.3 Non-Adigbatic Cases with Heat Generation and Preheating

The non-adiabatic cases with heat generation and preheating investigate the
effect on the series solution when both causes of two-dimensional heat transfer
are present. These runs are a subset of the runs in the previous section to which

preheating and subsequent heat generation are added.

Both the preheating and the disturbance problems are used for all runs. It
should be noted that the limiting cases for heat flux out and in are identical in the
preheating problem since the outer-radial boundary condition is the same in both
as is seen by Equations 27 and 28 in Section 2.2. The limiting case for heat flux in

models the condition where the thermal conductivity in the surrounding material
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is infinite and the temperature of the surrounding material is the temperature of
the fluid at the front surface. In the preheating problem, the temperature of the
fluid at the front surface is the initial temperature.

The tolerance used in the convergence criterion for the preheating problem is
0.1 for all runs. All runs use a value of 1/8 for the geometry parameter R, ., /R

cYL®

Each of the four cases is run with a few values for the geometry parameter L/R_,,.

Values of 0.0, 0.05 and 0.2 for the parameter 4 are run with each of the values for
L/R_,,. All runs are duplicated using values of 10.0 and 100.0 for the parameter
B.

Figures 37, 38, 39 and 40 show the results for the limiting case for heat flux
out, the intermediate case for heat flux out, the limiting case for heat flux in and
the intermediate case for heat flux in, respectively, using a value of 10.0 for 5.
Figures 75, 76, 77 and 78 in Appendix C.3 show the results for the limiting case
for heat flux out, the intermediate case for heat flux out, the limiting case for heat
flux in and the intermediate case for heat flux in, respectively, using a value of 100.0
for 8. As in the adiabatic cases, the preheating and subsequent heat generation

has no impact on the results.
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Figure 37. Results for the Limiting Case for Heat Flux Out Across the Quter-
Radial Boundary with Heat Generation and Preheating Using 3 =
10.0
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Figure 38. Results for the Intermediate Case for Heat Flux Out Across the Outer-
Radial Boundary with Heat Generation and Preheating Using 3 =
10.0
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V. Conclusions and Recommendations

This thesis numerically investigates the accuracy of the one-dimensional series
solution in determining the external surface heat flux actually present at the film
in thin-film heat transfer gages. The heat transfer problem is simplified to two
dimensions. From an overall point of view, the two possible causes for error in
the series solution are the electrical heat generation in the thin-film sensor and the
radial heat transfer induced by non-adiabatic conditions at the boundary of the
gage.

The results show that the electrical heat generation should not cause errors
as long as the instrumentation is turned on and the transients from the electrical
heat generation are allowed to settle down prior to the test. It should not take
long for the transients to settle down sufficiently to keep the error small. In tests
using an adiabatic condition at the boundary of the gage, a non-dimensional time
of 0.118, which is approximately twice as long as the time it takes the leading
edge of a thermal disturbance to travel through the gage, was sufficient. The
transients should settle down even quicker with non-adiabatic conditions since the

temperature changes will be less.

The radial heat transfer induced from non-adiabatic conditions at the bound-
ary of the gage can cause very significant errors in the results for long times. Be-
cause of limitations on the model, this investigation only looks at non-dimensional
times greater than 0.01. The two most significant non-dimensional parameters
which influence the error caused by the non-adiabatic conditions are the ratio of
the thermal diffusivities in the insulating and cylinder materials and the geome-
try parameter L/R_,, . Outward radial gradients caused by using an insulating
material with a smaller thermal diffusivity than that of the cylinder material will
cause the measured heat flux to be less than the actual, external surface heat flux.

Inward radial gradients caused by using an insulating material with a greater ther-

109




mal diffusivity will cause the measured heat flux to be greater than the actual. In

either case, a larger value of the geometry parameter L/R,.,, increases the error.

Limiting cases which bound the effects caused by non-adiabatic conditions
were investigated. In the limiting case for outward radial heat flux, keeping the
geometry parameter L/R.,, less than 1.0 limited the error in the measurement
for heat flux to less than 2 percent of the theoretically maximum, external surface
heat flux for non-dimensional times up to 0.07. In the limiting case for inward
radial heat flux, keeping the geometry parameter L/R,,, less than 0.6 limited the
error to 5 percent. In an intermediate case for outward radial heat flux, which
used a value of 1/6 for the ratio of the thermal diffusivities of the surrounding
material and the cylinder material, keeping the geometry parameter L/R_,, less
than 2.0 limited the error to 6 percent. Finally, in an intermediate case for inward
radial heat flux, which used a ratio of 6.0 for the thermal diffusivities, keeping the

geometry parameter L/R_,, less than 1.0 limited the error to 2 percent.

Using values of L/R_,, larger than these can produce large errors in the
results. In the limiting case for outward radial heat flux, using a value of 2.0 for
the geometry parameter L/R_,, and 0.1 for the Biot number at the front surface
produced a steadily increasing error which reached 30 percent by non-dimensional
time of 0.07. In the limiting case for inward radial heat flux, using a value of
0.8 for the geometry parameter L/R_,, and 0.1 for the Biot number at the front
surface produced an error which reached 85 percent. In the intermediate case for
outward radial heat flux, using a value of 4.0 for L/R_,, and 0.1 for the Biot
number produced an error which reached 13 percent. Finally, in the intermediate
case for inward radial heat flux, using a value of 2.0 for L/R_,,, and 0.1 for the Biot
number produced an error which reached 34 percent. Since the error increases with
time, one can attain better accuracy with larger values of the geometry parameter
L/R_,, and greater differences in the thermal diffusivities if one uses shorter test

times.
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The error caused by a non-adiabatic condition at the boundary of the gage
can be significant. One can try to limit this error in three ways. First, one can use
as good an insulating material as possible in mounting the gage. Although this
technique promises to improve the accuracy in the series solution, it may cause the
heat flux at the gage to be very different from the heat flux that would occur in the
absence of the gage because the temperature changes due to the electrical heating
will be greater. Secondly, one could try to match properties between the cylinder
material and the insulating material to limit the temperature difference across the
boundary of the cylinder. This technique should improve the accuracy of the series
solution while minimizing the deleterious effect of the electrical heating in the thin

film. Thirdly, one can use a gage with a smaller geometry ratio L/R,,,.

The results from this investigation must be weighed in view of the accuracy
of the model as estimated from the transient check cases for one-dimensional heat
transfer in the axial direction. As a conservative estimate, the model should be
accurate to within a percent difference of 4.0 for non-dimensional times greater
than 0.01 where the percent difference is the percent of the theoretically maximum,
external surface heat flux by which the series solution estimate differs from the

actual heat flux in the finite-difference model, i.e. (¢}, — ¢} ) x 100.00 .
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Appendix A. Nodal Equations

A.1  Single-Material Problem with Fully-Insulated, Outer-Radial Boundary

Condition

Preheating Problem:

Note 1: Nodal Equations (a)-(i) apply to the corresponding positions in
Figure 4.

Note 2: For nodes on the front surface of the cylinder, Equations (a)—(c), the
last term in the nodal finite-difference equation is included only if the node lies

within the heated disk.
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S

Disturbance Problem:
. Note 1: Nodal Equations (a)-(i) apply to the corresponding positions in
Figure 4.
Note 2: For nodes on the front surface of the cylinder, Equations (a)(c),

the last term in the nodal finite-difference equation, i.e. the term including the
parameter 7, is included only if the node lies within the heated disk.
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A.2 Tuwo-Material Problem with Fully-Insulated, Outer-Radial Boundary

Condition

Preheating Problem:

Note 1: Nodal Equations (a)-(o) apply to the corresponding positions in
Figure 5.

Note 2: For nodes on the front surface of the cylinder, Equations (a)-(c), the
last term in the nodal finite-difference equation is included only if the node lies

within the heated disk.
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Disturbance Problem:

Note 1: Nodal Equations (a)-(o} apply to the curresponding positions in
Figure 5.
Note 2: For nodes on the front surface of the cylinder, Equations (a)-(c),

the last term in the nodal finite-difference equation, i.e. the term including the

parameter 7, is included only if the node lies within the heated disk.
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. Appendix B. Graphs of Results from the Check Cases

B.1 Steady-State Check Cases for Heat Transfer in the Azial Direction

B.1.1 Preheating Problems

® 1o




uondaI(J [eIXY 9] ul Jojsuel] jesl 9jelg %.Tﬁvam 10} sjnsay 194310

ewnsy
NUAIIQ-NIUY

uonnos jlemijeuy

INON4 - ’
1g = PUod y

| =u3b p

“IHFAW

i = ‘—ZO¢‘A>COV.~; ﬂv

0= _ZOz.- m

() 2anB1 ‘wsjqo1 ] Suryeorpl ] oyy Juisp)

mom

0l

80 90
R TR T TR T Y N Y WY O
GIIIIIIIIIIA

LLLLLLL,
ANNNNNNN

“babp

INOHS) | INOUH MH

1.

"TF 23ty
v'0 o 00
(TR Y R T T TN Y 0 T T
01=Jo=40 i
—-Omu-__cm v.l
n. P hzaﬁknm —
suotjpuoy [

LA I B

T

z ‘SA

-.MQ

wmejqoag Supeeyeiy

000

0¢0

ov'0

09°0

080

00'!1

0c'1

ov'|

+0

132




(q) 2mSg ‘wpqo1J Funyedtpg sy3 Suisn)
wonoaIy(] [elXy 9yl ul Idjsuel], JeIY eIg Apenyg 10} sHMSAY IO T 2By

+N
0t 80 90 v'0 ¢'0 00
10 YO T O T TN TN O VAN N U VOO T T U U TN U QA WY T O A O 000
|
ca CHE
apuasIPO FM01s b= .H_h =Jo ¥
|||||| g _ » 5
uonnos eanhleuny  —— 0 — 9 = g = +0 |

uotnjog ﬁ. 020

!

¢ =g = NV g — INo¥i g

T

suoljipuo)

oy 0

/
T T

0= xu(auom

133

Ave

090

_ Yve .
NOYS, o = (Avo21, y)

T T T 7

e

aom +Q

2
INOUH g = puody y % 080
=ub p B
™

¥

I

T

i

.0

001

nvey ) Ve, “” o
ol T

INO¥J
1 = A>COU 1

LENR I 4

LI

I

JIIIIII 4
BANNNN NN

oc'l

hZOxuu .0

INOWYy | +INOUHy, M”

+7 ‘sA ) :weiqosd Bupiveyesd

LR

(0] A1

® |
[ ——




B.1.2 Disturbance Problems
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B.2 Steady-State Check Cases for Heat Transfer in the Radial Direction

Case numbers refer to the cases given in Tables 2 and 3. See Figure 13 in

Section 3.2 for the results from Case 2 using the single-material problem.

B.2.1 Single-Material Problems
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Single~Material Problem: ¢, vs. rt
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Figure 48. Case 1 for Steady State Heat Transfer in the Radial Direction Using
the Single-Material Problem
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Figure 49. Case 3 for Steady State Heat Transfer in the Radial Direction Using

the Single-Material Problem
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Figure 30. Case 4 for Steady State Heat Transfer in the Radial Direction Using

the Single-Material Problem
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B.2.2 Two-Material Problems
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Figure 51. Case 1 for Steady State Heat Transfer in the Radial Direction Using
the Two-Material Problem
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Figure 52. Case 2 for Steady State Heat Transfer in the Radial Direction Using
the Two-Material Problem
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Figure 33. Case 3 for Steady State Heat Transfer in the Radial Direction Using
the Two-Material Problem
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Figure 54. Case 4 for Steady State Heat Transfer in the Radial Direction Using
the Two-Material Problem
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. B.8 Transient Check Cases

B.3.1 The Semi-Infinite Solid with Constant Surface Heat Fluz
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Figure 55. Finite-Difference Model Values for §} vs. t* for the Semi-Infinite Solid

with Constant Surface Heat Flux
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Figure 56. Series Solution Estimates for ¢} (Using Analytical Values for 6}) vs.

Series Estimate for ¢f*
(Using Analytical Values for 6+) vs. tt

The Semi-infinite Soild with Constant Surface Heat Flux

—

t* for the Semi-Infinite Solid with Constant Surface Heat Flux
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Series Solution Estimates for ¢} (Using the Finite-Difference Model
Values for 6}) vs. t* for the Semi-Infinite Solid with Constant Surface

Heat Flux
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B.3.2 The Plane Wall with Convection
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Figure 58. Finite-Difference Model Values for §} vs. t* for the Plane Wall with
Convection
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Figure 59. Finite-Difference Estimates for ¢} vs. t* for the Plane Wall with Con-

vection
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Series Estimate for ¢}
(Using Analytical Values for 6}) vs. tt
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Figure 60. Series Solution Estimates for ¢} (Using Analytical Values for ) vs.
tt for the Plane Wall with Convection
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Series Solution Estimates for ¢} (Using the Finite-Difference Model
Values for 8}) vs. t* for the Plane Wall with Convection
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Comparing ¢} vs. tt
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Figure 62. Comparing the Finite-Difference Estimates. Series Solution Estimates
(Using the Finite-Difference Model Values for }) and Analytical Val-
ues for g} vs. t* for the Plane Wall with Convection
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Appendix C. Other Graphs of Results

C.1 Results for the Adiabatic Cases Using B8 = 100.0
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Figure 63. Results with Heat Generation and Preheating as - Varies Using J =
100.0
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(95en — ¢t ) x 100.00 vs. i+
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Figure 64. Results with Heat Generation and Preheating as the Tolerance Varies
Using 8 = 100.0
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Figure 65. Results with Heat Generation and Preheating as L/R_,,, Varies Using

g =100.0

162




(92 ~ 91 ,.) X 100.00 vs. £+
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Figure 66. Results with Heat Generation and Preheating as R,,;,./R.,, Varies
Using 8 = 100.0
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C.2 Results for the Non-Adiabatic Cases with No Heat Generation or Preheating
. Using 4Bi popnr = 1.0
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Figure 67. Results for the Limiting Case for Heat Flux Out Across the Quter-
Radial Boundary with No Heat Generation as L/R_,., Varies Using
dBiFRONT =1.0
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Figure 68. Results for the Intermediate Case for Heat Flux Out Across the Outer-
Radial b undary with No Heat Generation as L/R_,., Varies Using
aBiour = 1.0
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Figure 69. Resnlts for the Limiting Case for Heat Flux In Across the OQuter-
Radial Boundary with No Heat Generation as L/R_,, Varies Using
dBipponr =1.0




+

+

(95en = 9}5) x 100.00 va. o+

—g*_) x 100.00

(q

100.00 Jntermediate Case for Heat Flow In
-
]431',”,". =1.0
80.00
60.00
-1
: L/ch = 5.0 L/ch = 4.0
40.00 - </
a . L/R.,, =30
s 20.00 TRey, =20
: L/Rcy,_ =1.0
0.00 - . <5
-
—-20.00 o | R
1 RoenlReys = 1/8
_40.00-1I'TTIIIIII[TFTTTIIII[ITTIIIIITITIIIIIIII
0.00 0.02 0.04 0.06 0.08
tt

Figure 70. Results for the Intermediate Case for Heat Flux In Across the Outer-
Radial Boundasy with No Heat Generation as L/R.,, Varies Using
aBiggonr = 1.0
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Figure 71. Results for the Limiting Case for Heat Flux Out Across the Outer-
Radial Boundary with No Heat Generation as R,,,,./R.,, Varies Us-
ing ¢Bi,ponr = 1.0
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Figure 72. Results for the Intermediate Case for Heat Flux Out Across the Quter-
Radial Boundary with No Heat Generation as R, /R.,, Varies Us-

ing dBiFRoNT =1.0
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Figure 73. Results for the Limiting Case for Heat Flux In Across the Outer-

Radial Boundary with No Heat Generation as R, /R.,, Varies Us-

ing dBiFRONT =1.0
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Figure 74. Results for the Intermediate Case for Heat Flux In Across the Outer-
Radial Boundary with No Heat Generation as R, /R.,, Varies Us-
ing 4Biyponr = 1.0

172




M

C.3 Results for the Non-Adiabatic Cases with Heat Generation and Preheating
. Using f = 100.0

o 173




o
(g

-60.00
RDISX/RCYL =1/8

40.00 (93,0 — 9}, ) x 100.00 vs. pre
Limiting Case for Heat Flow OQut
18=1000
20.00 -
R L/R.,, =10
0.00 -+
" -
S -
& -—20.00 -+
~ -
- 7
+a 7
o —
', —40.00
+9 i

—80.00
—100.00 LA S S N N N SN S N N NN S A (N NN S A N N S AN NON B SN (N NNV AN BN AN AN BN NN AN SN SN AN {
0.00 0.02 0.04 0.06 0.08
tt

Figure 75. Results for the Limiting Case for Heat Flux Out Across the Outer-
Radial Boundary with Heat Generation and Preheating Using 3 =
100.0
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Figure 76. Results for the Intermediate Case for Heat Flux Out Across the Outer-
Radial Boundary with Heat Generation and Preheating Using g =

100.0
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Figure 77. Results for the Limiting Case for Heat Flux In Across the Outer-Radial

Boundary with Heat Generation and Prcheating Using 8 = 100.0
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Figure 78. Results for the Intermediate Case far Heat Flux In Across the Outer-
Radial Boundary with Heat Generation and Preheating Using 8 =
100.0
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. Appendix D. FEzample Programs

D.1 The Finite-Difference Model for the Single-Material Problem with

Fully-Insulated, Outer-Radial Boundary Condition

PROGRAM GAGE2M
T T I R R L T Tt T

# 2LT JOSEPH A. BONAFEDE, GA-88M *
* FALL 1987 *
* *
* ADVISOR: DR. JAMES E. HITCHCOCK *

SRR R AR R AR ERREEREREE R E R AR E R R KRR KRR KRR R hk

GLOSSARY OF MAIN VARIABLES:
THAOLD - ARRAY STORING NON-DIMENSIONAL TEMPERATURE VALUES FOR
ALL GRID POINTS. USE THAOLD TO STORE INITIAL VALUES
AND TO STORE VALUES DURING PREVIOS TIME STEP.
USED INTERNALLY
THANEW - ARRAY TO STORE NEW NON-DIMENSIONAL TEMPERATURE VALUES
CALCULATED DURING A NEW TIME STEP.
USED INTERNALLY
IMAX - DETERMINES WUMBER OF NODES IN THE RADIAL DIRECTION. NUMBER
OF NODES IN THE RADIAL DIRECTION EQUALS (IMAX + 1).
INPUT PARAMETER
KMAX - DETERMINES THE NUMBER OF NODES IN THE Z DIRECTION (FRONT TO
BACK OF GAGE). NUMBER OF NODES IN THE Z DIRECTION EQUALS
(KMAX + 1).
INPUT PARAMETER
IGEN - ARRAY WHICH STORES INFORMATION ABOUT TOP SURFACE NODES.
STORES VALUE OF 1.0 FOR A NODE IF THE NODE IS IN THE HEAT
GENERATING REGION AND A VALUE OF 0.0 FOR A NODE IF IT IS NOT.
USED INTERNALLY
IGENMX - LARGEST RADIAL NODE INCLUDED IN THE HEAT GENERATING REGION.
INPUT PARAMETER
DELT - TIME STEP (NON-DIMENSIONAL TIME).
INPUT PARAMETER
MAXT - MAXIMUM NUMBER OF TIME STEPS ALLOWED.
INPUT PARAMETER
TDIST - TIME STEP AT WHICH TO CHANGE TO THE EXTERNAL DISTURBANCE
PROBLEM (AS LONG AS TDIST .LE. MAXT).
INPUT PARAMETER
TIME1 - TIME STEP AT WHICH TO CHANGE TO THE EXTERNAL DISTURBANCE
PROBLEM IN THE PROGRAM.

QA0 OGO LLOCOOOOO0O00O0O000O00O0
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TIME{=0 => EXTERNAL DISTURBANCE PROBLEM ALWAYS
2¢<=TIME1<=MAXT => SWITCH FROM NON-DISTURBANCE PROBLEM
TO DISTURBANCE PROBLEM AT N=TIME1
TIME1=MAXT+1 => NON-DISTURBANCE PROBLEM ALWAYS
USED INTERKALLY
COUNT - NUMBER OF TIME STEPS INTO THE DISTURBANCE PROBLEMX (I.E.
THE NUMBER OF TIME STEPS ALREADY RUN FOR THE DISTURBANCE
PROBLENM) .
USED INTERNALLY
MAXTHA - LARGEST ABSOLUTE VALUE FOR NEW NON-DIMENSIONAL TEMPERATURE
IN THE TIME STEP (I.E. LARGEST VALUE STORED IT THANEW
ARRAY).

USED INTERNALLY
CHNG - ABSOLUTE CHANGE IN NON-DIMENSIONAL TEMPERATURE AT EACH
NODE DURING THE LAST TIME STEP.
USED INTERNALLY
VISCHNG - CHANGE IN NON-DIMENSIONAL TEMPERATURE AT EACH NODE DURING
THE LAST TIME STEP AS A FRACTION OF THE LARGEST VALUE FOR
NON-DIMENSIONAL TEMPERATURE IN THAT TIME STEP (I.E.
VISCHNG = CHNG/MAXTHA ).
USED INTERNALLY
MAXCH - MAXIMUM VALUE FOR VISCHNG DURING THE TIME STEP (AS LONG AS
THE VALUE FOR MAXTHA FOR THE TIME STEP IS NOT NEAR ZERO. IF
THE VALUE FOR MAXTHA IS NEAR ZERO, USE ABSOLUTE CHANGE RATHER
THAN VISUAL CHANGE AS THE COVERGENCE CRITERIA.)
USED INTERNALLY
TOL - VALUE TO USE IN DETERMINING CONVERGENCE (STEADY STATE PROBLEMS
ONLY). 1IF RATE OF VISUAL CHANGE IS LESS THAN TOL, THEN ASSUME
THAT THE PROGRAM HAS CONVERGED SUFFICIENTLY.
(I.E. MAXCH/DELT < TOL => CONVERGENCE BECAUSE RATE OF CHANGE
IS SUFFICIENTLY SMALL )
INPUT PARAMETER
LRRAT - THE GEOMETRY RATIO (LENGTH OF GAGE)/(RADIUS OF GAGE).
INPUT PARAMETER
GBIOT - THE TOP SURFACE BIOT NUMBER BEFORE THE DISTURBANCE.
INPUT PARAMETER
GBIOTB - THE BOTTOM SURFACE BIOT NUMBER BEFORE THE DISTRUBANCE.
INPUT PARAMETER
DBIOT - THE TOP SURFACE BIOT NUMBER AFTER THE DISTRUBANCE.
INPUT PARAMETER
DBIOTB - THE BOTTOM SURFACE BIOT NUMBER AFTER THE DISTURBANCE.
INPUT PARAMETER
BIOT - TOP SURFACE BIOT NUMBER AT THE PARTICULAR TIME STEP.
USED INTERNALLY
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BIOTB - BOTTOM SURFACE BIOT NUMBER AT THE PARTICULAR TIME STEP.
USED INTERNALLY
GENRAT - THE “GENERATION RATIO" (QGEN/DBIOT)/(TFFINAL - TINIT).
INPUT PARAMETER
BFRAT - THE RATIO (TFBACK - TINIT)/(TFFRONT - TINIT) WHERE TFBACK
AND TFFRONT ARE THE FLUID TEMPERATURES DURING THE
DISTURBANCE PROBLENM.
1NPUT PARAMETER
DGBIRAT - THE RATIO (DBIOT)/(GBIOT).
USED INTERNALLY
DELR - SPACIAL STEP IN THE NON-DIMENSIONAL RADIAL DIRECTION.
USED INTERNALLY
DELZ - SPACIAL STEP IN THE NON-DIMENSIONAL Z DIRECTION.
USED INTERNALLY
I - INDEX VARIABLE FOR NON-DIMENSIONAL RADIAL DIRECTION.
USED INTERNALLY
K - INDEX VARIABLE FOR NON-DIMENSIONAL Z DIRECTION.
USED INTERNALLY

N - INDEX VARIABLE FOR TIME STEPS.
USED INTERNALLY
RUNNUM - THE RUN NUMBER (USED FOR BOOK KEEPING PURPOSES).
INPUT VARIABLE
LAMR1 ,LAMZ1,LAMZ2,P1 - COMMON PRODUCT TERMS IN THE FINITE
ELEMENT EQUATIONS.
USED INTERNALLY

DECLARE VARIABLES:
IMPLICIT CHARACTER(A-Z)
REAL THAOLD(0:20,0:20),THANEW(0:20,0:20)
REAL IGEN(0:20)
REAL DELT
INTEGER MAXT,TDIST,TIME1,COUNT
REAL MAXTHA,CHNG,VISCHNG,MAXCH,TOL
INTEGER IMAX,KMAX,IGENMX
REAL LRRAT
REAL BIOT,BIOTB,GBIOT,GBIOTB,DBIOT,DBIOTB
REAL DGBIRAT,GENRAT,BFRAT
REAL DELR,DELZ,LAMR1,LAMZ1,LAMZ2,P1
REAL A1,A2,A3,4,8,C1,C,D
INTEGER RUNNUM
INTEGER I,K,N
INTEGER IX,Y

- > - A D R W A T - P s M T R e = e W - - -
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C OPEN INPUT/OQUTPUT FILES.

C
. OPEN(UNIT=1,FILE=’G2INP’ ,STATUS=’0LD’)
OPEN(UNIT=2,FILE=’G20UT’ ,STATUS=’NEW’)
OPEN(UNIT=3,FILE="INIT’ ,STATUS=’(0LD’)
QPEN(UNIT=10,FILE=’DISKT’ ,STATUS=’NEW*)
REWIND(UNIT=1)
REWIND (UNIT=3)

C READ INPUT PARAMETERS.

READ(1,*)
READ(1,*) DELT
READ(1,#%) MAXT
READ(1,*) TDIST
READ(1,*) TOL

READ(1,*) IMAX
READ(1,*) KMAX
READ(1,*) IGENMX
READ(1,%) LRRAT

c

‘ READ(1,*) GBIOT
READ(1,*) GBIOTB
READ(1,*) DBIOT
READ(1,*) DBIOTB
READ(1,*) GENRAT
READ(1,#) BFRAT
READ(1,*) DGBIRAT
READ(1,#) RUNNUM

O

INITIALIZE PARAMETER NEEDED IN PRINTING OUT HEADER ( USING HEADER
INSTEAD OF JUST ECHOING THE INPUT ).

(2]

aaon

IF (TDIST .LE. 1 ) THEN
TIMEL = 0

ELSEIF (TDIST .GT. MAXT) THEN
TIMEL = MAXT + 1

ELSE
TIME1 = TDIST

ENDIF
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c -----------------------------------------------------------------
‘l. C PRINT HEADER.
c
WRITE(2,*)’RUN NUMBER ’, RUNNUM
WRITE(2,*)’INPUT VALUES:’
WRITE(2,*)
WRITE(2,%) s+ GEOMETRY OF THE GAGE AND FINITE ELEMENT MESH s#’
WRITE(2,%)
WRITE(2,¢)’ GRID POINTS IN R-DIRECTION : O - °,IMAX
WRITE(2,#)* GRID POINTS IN Z-DIRECTION : O - ' KMAX
IF (IGENMX .LT. 0) THEN
WRITE(2,*)’ R-DIRECTION GRID POINTS INCLUDED’
WRITE(2,%#)’ 1IN THE HEAT GENERATING DISK : NONE’
ELSEIF (IGENMX .EQ. O) THEN
WRITE(2,*)' R-DIRECTION GRID POINT INCLUDED®
WRITE(2,#)’ 1IN THE HEAT GENERATING DISK : 0
ELSE
WRITE(2,*)’ R-DIRECTION GRID POINTS INCLUDED’
WRITE(2,*)* 1IN THE HEAT GENERATING DISK : 0 - *,IGENMX
ENDIF
WRITE(2,*)
WRITE(2,*)’ RATIO OF (LENGTH OF GAGE)/(RADIUS OF GAGE) = ’,LRRAT
WRITE(2,*)
WRITE(2,%)
. WRITE(2,#) ' ++TIME STEP AND LIMITS INCLUDING EXTERNAL PARAMETERS#*#’
WRITE(2,%)

WRITE(2,*)’ DELTA T = ’,DELT
WRITE(2,%)
WRITE(2,*)’ MAXIMUM NUMBER OF TIME STEPS = ’ MAXT
WRITE(2,*)’ TOLERANCE FOR CONVERGENCE = ’,TOL
WRITE(2,%)
IF (TIMER .EQ. 2) THEN
WRITE(2,*)' TIME STEP ASSIGNED TO THE "START UP'™’
WRITE(2,*)* PROBLEM ( NO EXTERNAL DISTURBANCE ) : 1’

WRITE(2,#)’ BIOT NUMBER AT THE TOP SURFACE = ' ,GBIOT
WRITE(2,s)’ BIOT NUMBER AT THE BOTTOM SURFACE = °,GBIOTB
ENDIF

IF (TIMEY .GT. 2) THEN
WRITE(2,+)’ TIME STEPS ASSIGNED TO THE "START UP"’
WRITE(2,+)’ PROBLEM ( NO EXTERNAL DISTURBANCE ) : 1 - ’,

4 TIME1-1
WRITE(2,+)’ BIOT NUMBER AT THE TOP SURFACE = ' ,GBIOT
WRITE(2,#)* BIOT NUMBER AT THE BOTTOM SURFACE = ’,GBIOTB
ENDIF
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IF ((TIME1 .EQ.

WRITE(2,*)

WRITE(2,#)*
WRITE(2,#)’
WRITE(2,*)’
WRITE(2,+)’
WRITE(2,*)’
WRITE(2,¥*)’
WRITE(2,*)’

ENDIF
IF ((TIME1 .EQ.

WRITE(2,*)

WRITE(2,%)’
WRITE(2,%*)’
WRITE(2,%)?
WRITE(2,%)’
WRITE(2,%)’
WRITE(2,%)’
WRITE(2,%*)’

ENDIF
IF ((TIME{ .GT.

WRITE(2,*)

WRITE(2,#*)’
WRITE(2,#*)’
WRITE(2,*)’
WRITE(2,*)’
WRITE(2,*)’
WRITE(2,*)’
WRITE(2,#*)’

ENDIF
IF ((TIME1 .GT.

WRITE(2,*)

WRITE(2,*)’
WRITE(2,%*)’

0) .AND.(MAXT .GT. 1)) THEN

TIME STEPS ASSIGNED TO THRE PROBLEM’

WITH AN EXTERNAL DISTURBANCE : 1 =7, MAXT
BIOT NUMBER AT THE TOP SURFACE = *’,DBIOT
BIOT NUMBER AT THE BOTTOM SURFACE = ' ,DBIOTB
RATIO (QGEN/DBIOT)/(TFFINAL - TI) = * ,GENRAT
RATIO (TFBACK - TI)/(TFFRONT - TI) = ’ ,BFRAT
RATIO (DBIOT)/(GBIOT) = ’,DGBIRAT

0) .AND. (MAXT .EQ. 1)) THEN

TIME STEP ASSIGNED TO THE PROBLEM’

WITH AN EXTERNAL DISTURBANCE 1
BIOT NUMBER AT THE TOP SURFACE = ' ,DBIOT
BIOT NUMBER AT THE BOTTOM SURFACE = ’ DBIOTB
RATIC (QGEN/DBIOT)/(TFFINAL - TI) ' ,GENRAT
RATIO (TFBACK - TI)/(TFFRONT - TI) = ’ BFRAT
RATIO (DBIOT)/(GBIOT) = ’,DGBIRAT

0) .AND.(TIME1 .EQ. MAXT)) THEN

TIME STEP ASSIGNED TO THE PROBLEM’

WITH AN EXTERNAL DISTURBANCE . ?,TIME1
BIOT NUMBER AT THE TOP SURFACE = ’,DBIOT
BIOT NUMBER AT THE BOTTOM SURFACE = ’,DBIOTB
RATIO (QGEN/DBIOT)/(TFFINAL - TI) = ’,GENRAT
RATIO (TFBACK - TI)/(TFFRONT - TI) = ’,BFRAT
RATIO (DBIOT)/(GBIOT) = ’,DGBIRAT

0) .AND.(TIME1 .LT. MAXT)) TKHEN

TIME STEPS ASSIGNED TO THE PROBLEM’
WITH AN EXTERNAL DISTURBANCE HE

TIME1,’ - ’ ,MAXT

WRITE(2,%)’ BIOT NUMBER AT THE TOP SURFACE = *,DBIOT
WRITE(2,$)’ BIOT NUMBER AT THE BOTTOM SURFACE = ' ,DBIOTB
WRITE(2,%)’ RATIO (QGEN/DBIOT)/(TFFINAL - TI) = ’,GENRAT
WRITE(2,%)’ RATIO (TFBACK - TI)/(TFFRONT - TI) = *,BFRAT
WRITE(2,%)’ RATIO (DBIOT)/(GBIOT) = ’,DGBIRAT

ENDIF

WRITE(2,*)

WRITE(2,*)

WRITE(2,*) 'RESULTS:’
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WRITE(2,%)

o c
o
C INITIALIZE ARRAYS AND OTHER PARAMETERS.

(o
READ(3,*)
DO 100 K = 0,KMAX
DO 110 I = O,IMAX
THANEW(I,K) = 0.
READ(3,5) THAOLD(I,K)
IF (TIME1 .EQ. O) THAOLD(I,K) = THAOLD(I,K)*GENRAT*DGBIRAT
110 CONTINUE
100  CONTINUE
c
DO 120 I = O,IMAX
IF (I .LE. IGENMX) THEN
IGEN(I) = 1.
ELSE
IGEN(I) = 0.
ENDIF
120 CONTINUE
c
DELR = 1./FLOAT(IMAX)
‘ DELZ = 1./FLOAT(KMAX)
c
LAMR1 = DELT/DELR#s2
LAMZ1 = DELT/DELZ##2
LAMZ2 = DELT/DELZ
c
P1 = (FLOAT(IMAX) - .5)/(FLOAT(IMAX) - .25)
c
C ~~~ecmemmeeermemece et mc e eeccececcmcmecmcmee—ceee
C tt#ttttttttt##t‘tt‘###t#‘t#tttttt#ttttttttt##tttt#tt‘ttt#tttt‘
€ ~--eememecmmemmmec et ccmmemmem—e—eee
C MAIN LOOP.
c

IF (TIME1 .EQ. O) THEN
BIOT = DBIOT
BIOTB = DBIOTB
ELSE
BIOT = GBIOT
BIOTB = GBIOTB
ENDIF
COUNT = O
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MAXCH = 99.99
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DO 500 N = 1,MAXT
IF ((MAXCH/DELT) .GT. TOL) THEN

o L T D L R L R P R L L L A P L L T R T

P e e L R L R R T L R L P L

REDEFINE BIOT NUMBERS AND UPDATE THAOLD WHEN STARTING
THE DISTURBANCE PROBLEM.

IF (N .EQ. TIME1) THEN
BIOT = DBIOT
BIOTBR = DBIOTB
DO 1000 I = O,IMAX
DO 1010 K = O,KMAX
THAOLD(I,K) = THAOLD(I,K)*GENRAT#*DGBIRAT
CONTINUE
CONTINUE
ENDIF

- S A P P - = " = R @ e W R T e - .-

SOLVE FOR NEXT TIME STEP.

FRONT OF GAGE

A

A = 4.+(LRRAT#s2)sLAMR1* THAOLD(1,0)
B = 2.+LAMZ1s THAOLD(O,1)
C1 = 1. - 4.%(LRRAT**2)sLAMR1 - 2.+LAMZ1 - 2.+LAMZ2+BIOT
C = C1*= THAOLD(0,0)
IF (N .LT. TIME1) THEN
D = 2.*LAMZ2+BIOT# IGEN(O)
ELSE
D = 2.sLAMZ2¢BIOT#(1. + IGEN(O)*GENRAT)

ENDIF
THANEW(0,0) = A + B+ C + D

(B)
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"I' DO 600 I = 1,IMAX-{
Al = 1. = 1./(2.¢FLOAT(I))
A2 = 1. ¢ 1./(2.+FLOAT(I))
A3 = (LRRAT##2)*LAMR1
A = A3+( Als THAOLD(I-1,0) + A2+ THAOLD(I+1,0) )
B = 2.¢LAMZ1s THAOLD(I,1)
C1 = 1. - 2.¢(LRRAT##2)+LAMR1 - 2.sLAMZ1 - 2.sLAMZ2¢BIOT
C = Ci» THAOLD(I,O)
IF (N .LT. TIME1) THEN
D = 2.sLAMZ2*BIOT* IGEN(I)
ELSE
D = 2.%LAMZ2#BIOT#(1. + IGEN(I)*GENRAT)
ENDIF
THANEW(I,0) = A + B+ C + D
600 CONTINUE

©

QOO

A = 2.%(LRRAT*#2)*LAMR1*P1* THAOLD(IMAX-1,0)
B = 2.LAMZ1* THAOLD(IMAX,1)
C1 = 1. - 2.%(LRRAT#s2)*LAMR1#P1 - 2 #LAMZ1 - 2.%LAMZ2+BIOT
C = Ci* THAOLD(IMAX,0)
IF (N .LT. TIME1) THEN
. D = 2.sLAMZ2¢BIOT* IGEN(IMAX)
ELSE
D = 2.+LAMZ2¢BIOT#(1. + IGEN(IMAX)*GENRAT)
ENDIF
THANEW(IMAX,0) = A + B + C + D

INTERIOR OF GAGE

aaonoooon

DO 700 K = 1,KMAX-1

(2]

)

(2]

A = 4.« RAT#*2)+«LAMR1* THAOLD({,K)

B = LAMZ1*( THAOLD(O,K-1) + THAOLD(O,X+1) )
C1 = 1. - 4.%(LRRAT*#2)*LAMR]L - 2.sLAMZ1

C s Cis THAOLD(0,K)

THANEW(O,K) = A + B + C

c (E)
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DO 750 I = 1, IMAX-1
Al = 1. - 1./(2.¢FLDAT(I))
A2 = 1. + 1./(2.¢FLOAT(I))
A3 = (LRRAT**2)sLAMR1
A = A3#( Ale THAOLD(I~-1,K) + A2+« THAOLD(I+1,X) )
B = LAMZis( THAOLD(I,K-1) + THAOLD(I,K+1) )
Ci = 1. ~ 2.«(LRRAT**2)sLAMR1 - 2.#LAMZ1
C = C1* THAOLD(I,K)
THANEW(I,K) = A + B + C
CONTINUE

(F)

A = 2.«(LRRAT**2)*LAMR1*P1* THAOLD(IMAX-1,K)

B = LAMZ1+( THAOLD(IMAX,K-1) + THAOLD(IMAX,K+1) )
C1 = 1. - 2.«(LRRAT##2)*LAMR1*P1 ~ 2.*LAMZ1

C = Cix THAOLD(IMAX,X)

THANEW(IMAX,K) = A + B + C

CONTINUE

BACK OF GAGE

(G)

A = 4. s(LRRAT#*2)*LAMR1i# THAOLD(1,KMAX)
B = 2.sLAMZ1# THAOLD(O,KMAX-1)
C1 =1, -~ 4,#(LRRAT##2)+LAMR]1 - 2.*LAMZ1 - 2.sLAMZ2sBIOTB
C = Cis THAOLD(O,KMAX)
IF (N .LT. TIME1) THEN
D=0.
ELSE .
D = 2.#LAMZ2+BIOTB* BFRAT
ENDIF
THANEW(O,KMAX) = A ¢+ B+ C + D

(H)
DO 800 I = 1,IMAX-1
AL = 1. - 1./(2.¢FLOAT(I))
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800

aaon

a0 aaq

A2 s 1. + 1./(2.sFLOAT(I))

A3 = (LRRAT**2)sLAMR1

A = A3+( Afs THAOLD(I-1,KMAX) + A2¢ THAOLD(I+1,KMAX) )

B = 2.sLAMZi* THAOLD(I,KMAX-1)

Ci1 = 1. - 2.*(LRRAT**2)*LAMRL - 2.¢LAMZ1 - 2.*LAMZ2¢BIOTB
C = Cis THAOLD(I,KMAX)

IF (N .LT. TIME1) THEN

D =0.
ELSE
D = 2.sLAMZ2+BI0OTB* BFRAT
ENDIF
THANEW(I,KMAX) = A + B + C + D
CONTINUE

(D

A = 2.#*(LRRAT*#2)*LAMR1*P1* THAOLD(IMAX-1,KMAX)
B = 2.+«LAMZ1« THAOLD(IMAX ,KMAX-1)
C1 = 1. - 2.#(LRRAT**2)*LAMR1#P1 - 2.%LAMZ1 - 2.*LAMZ2+BIOTB
C = Cis THAOLD(IMAX,KMAX)
IF (N .LT. TIME1) THEN
D = 0.
ELSE
D = 2.#LAMZ2+BIOTB* BFRAT
ENDIF
THANEW(IMAX ,KMAX) = A + B + C + D

- > D e R D L D D D L T D R P D D D e P L T S = A R W e

WRITE NON-DIMENSIONAL TEMPERATURE VALUES AT THE HEATED DISK

TO FILE "DISKT" (DURING DISTURBANCE PROBLEM ONLY).

s+ MODIFIED TO WRITE TO "DISKT" ONLY AT INITIAL TIME STEP
OF DISTURBANCE PROBLEM AND AT TIME STEPS T+ = .001-.070
WITH DELT=.001 AFTER THE DISTURBANCE PROBLEM STARTS.
BE CAREFUL TO HAVE ENOUGH TIME STEPS TO HAVE ATLEAST
.070 IN NON-DIMENSIONAL TIME FOR THE DISTURBANCE (I.E.
NEED TO HAVE COUNT ATLEAST EQUAL TO 70 WHEN THE PROGRAM
FINISHES).

IF (N .GE. TIME1) THEN
IF ( (N.EQ.TIME1) .OR. ((TIME1.EQ.O0).AND.(N.EQ.1)) ) THEN
COUNT = 0
WRITE(10,25) COUNT
DO 1100 I = 0,IGENMX
WRITE(10,30) I,THAOLD(I,O)
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1100 CONTINUE

o ENDIF

X = N - MAX(TIME1,1) + 1

Y = NINT(.001/DELT)

IF ( MOD(X,Y) .EQ. O ) THEN
COUNT = COUNT + 1|
WRITE(10,25) COUNT
DO 1125 I = O,IGENMX

WRITE(10,30) I,THANEW(I,O0)

1125 CONTINUE
ENDIF
ENDIF

c

c ----------------------------------------------------
c ROLL DOWN THAOLD(1:20,1:20) AND FIND MAXIMUM VISUAL
c PERCENT CHANGE. (BE CAREFUL NOT TO DIVIDE BY ZERO.)
c

MAXTHA = 0.
DO 900 I = O,IMAX
DO 910 K = O,KMAX
IF ( ABS(THANEW(I,K)) .GT. MAXTHA) THEN

. MAXTHA = ABS(THANEW(I,K))
ENDIF
910 CONTINUE
900 CONTINUE
c
MAXCH = 0,

DO 950 I = O,IMAX
D6 960 K = O,KMAX
CHNG = ABS( THANEW(I,K) - THAOLD(I,K) )
IF ( MAXTHA .GT. 1.E-15) THEN
VISCHNG = CHNG/MAXTHA
IF (VISCHNG .GT. MAXCH) MAXCH = VISCHNG

ELSE
IF (CHNG .GT. MAXCH) MAXCH = CHNG

ENDIF

'"HAOLD(I,K) = THANEW(I,K)
960 CONTINUVE
950 CONTINVE
C
c -----------------------------------------------------------------

ELSE

c -----------------------------------------------------------------




‘ c CONVERGES. JUMP OUT OF LOOP.

c
WRITE(2,%)
WRITE(2,#*)’CONVERGES AFTER ’,N-1,’ ITERATIONS.’
WRITE(2,*) MAXIMUM CHANGE ON THE LAST ITERATION WAS ’,MAXCH,’.’
GOTO 2000

c

€ ~emcmmmmmmo—cmemeeeceeemmem e eeeeetesccesecmccccemccmmmcmeeemeoe

ENDIF
500  CONTINUE
C =ecemmmmmmece e e e e ceemeecccmmcemacemeeeac

c

c IF YOU EXECUTE THESE STATEMENTS, THEN YOU COMPLETED THE

c MAXIMUM NUMBER OF ITERATIONS FOR THE LOOP WITHOUT CONVERGING.
c PRINT MESSAGE IF EXPECTING SOME CONVERGENCE (I.E. TOL > 0).

c

IF (TOL .GT. 0.) THEN
WRITE(2,%*)

WRITE(2,#*)’QUITS WITHOUT CONVERGING AFTER ’,N-1,’ ITERATIONS.’
WRITE(2,*) ’MAXIMUM CHANGE ON THE LAST ITERATION WAS ’,MAXCH,'.®
ENDIF

®  —omemememeoemmememememememeemeemememeememeememeoemeeceenemens

R S
2000 CONTINUE
c
C ==ce-ccceemmmeeo—e—eecsmmeemeeemeeecccoccmcecceacseercmmmmemece—e-
C PRINT CHECK ON VALUE OF COUNT.
c
IF (COUNT .LT. 70) THEN
WRITE(2,%)
WRITE(2,#*) 'WARNING: COUNT LESS THAN 70. COUNT = ’,COUNT
WRITE(2,%)
ELSE
WRITE(2,*)
WRITE(2,#*)'VALUE OF COUNT IS ’,COUNT
WRITE(2,+)
WRITE(2,*)
ENDIF
c
C ~==--cccemmmmmesceseeeccesemmesememeeeeeceecccec—mee—e—semcmcoeemeae

C FORMAT STATEMENTS.
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25
30

FORMAT(20X,E17.10)
FORMAT(IS)
FORMAT(IS,5X ,E17.10)

END
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D.2 The Finite-Difference Model for the Two-Material Problem with

QOO OO0 O000O00000000000000O0

Fully-Insulated, Outer-Radial Boundary Condition

PROGRAM GAGE4M
P T T T2 T e L T T T e

« 2LT JOSEPH A. BONAFEDE, GA-88M *
* FALL 1987 .
* *
« ADVISOR: DR. JAMES E. HITCHCOCK .

SEERE AR RREXEREARRESERRERRE AR R R R R AR S AR R R h kR SR LS

GLOSSARY OF MAIN VARIABLES:
THAGLD - ARRAY STORING NON-DIMENSIONAL TEMPERATURE VALUES FOR
ALL GRID POINTS. USE THAOLD TO STORE INITIAL VALUES
AND TO STORE VALUES DURING PREVIOUS TIME STEP.
USED INTERNALLY
THANEW - ARRAY TO STORE NEW NON-DIMENSIONAL TEMPERATURE VALUES
CALCULATED DURING A NEW TIME STEP.
USED INTERNALLY
IMAX - DETERMINES NUMBER OF NODES IN THE RADIAL DIRECTION. NUMBER
OF NODES IN THE RADIAL DIRECTION EQUALS (IMAX + 1).
INPUT PARAMETER
KMAX - DETERMINES THE NUMBER OF NODES IN THE Z DIRECTION (FRONT TO
BACK OF GAGE). NUMBER OF NODES IN THE Z DIRECTION EQUALS
(KMAX + 1).
INPUT PARAMETER
IGAGE - DETERMINES THE NUMBER OF NODES IN THE RADIAL DIRECTION
WHICH ARE INCLUDED IN THE GAGE. THE RADIAL DIRECTION
NODES WHICH MAKE UP THE GAGE ARE NODES WITH I = 0 - IGAGE.
ALSO DETERMINES THE NON-DIMENSIONAL STEP SIZE IN THE
RADIAL DIRECTION. THE NON-DIMENSIONAL STEP SIZE IN THE
RADIAL DIRECTION EQUALS 1./IGAGE (I.E. DELR = 1./IGAGE).
INPUT PARAMETER
IGEN - ARRAY WHICH STORES INFORMATION ABOUT TOP SURFACE NODES.
STORES VALUE OF 1.0 FOR A NODE IF THE NODE IS IN THE HEAT
GENERATING REGION AND A VALUE OF 0.0 FOR A NODE IF IT IS NOT.
USED INTERNALLY
IGENMX - LARGEST RADIAL NODE INCLUDED IN THE HEAT GENERATING REGION.
INPUT PARAMETER
DELT - TIME STEP (NON-DIMENSIONAL TIME).
INPUT PARAMETER
MAXT - MAXIMUM NUMBER OF TIME STEPS ALLOWED.
INPUT PARAMETER
TDIST - TIME STEP AT WHICH TO CHANGE TO THE EXTERNAL DISTURBANCE
PROBLEM (AS LONG AS TDIST .LE. MAXT).
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INPUT PARAMETER
TIME1 - TIME STEP AT WHICH TO CHANGE TO THE EXTERNAL DISTURBANCE

PROBLEM IN THE PROGRAM.
TIME1=0 => EXTERNAL DISTURBANCE PROBLEM ALWAYS
2¢<=TIME1<=MAXT => SWITCH FROM NON-DISTURBANCE PROBLEM

TO DISTURBANCE PROBLEM AT NsTIME{

TIME${=MAXT+1 => NON-DISTURBANCE PROBLEM ALWAYS

USED INTERNALLY

COUNT - NUMBER OF TIME STEPS INTO THE DISTURBANCE PROBLEM (I.E.
THE NUMBER OF TIME STEPS ALREADY RUN FOR THE DISTURBANCE
PROBLEN) .
USED INTERNALLY
MAXTHA - LARGEST ABSOLUTE VALUE FOR NEW NON-DIMENSIONAL TEMPERATURE
IN THE TIME STEP (I.E. LARGEST VALUE STORED IN THANEW
ARRAY).
USED INTERNALLY
CHNG - ABSOLUTE CHANGE IN NON-DIMENSIONAL TEMPERATURE AT EACH
NODE DURING THE LAST TIME STEP.
USED INTERNALLY
VISCHNG - CHANGE IN NON-DIMENSIONAL TEMPERATURE AT EACH NODE DURING
THE LAST TIME STEP AS A FRACTION OF THE LARGEST VALUE FOR
NON-DIMENSIONAL TEMPERATURE IN THAT TIME STEP (I.E.
VISCHNG = CHNG/MAXTHA ).
USED INTERNALLY
MAXCH - MAXIMUM VALUE FOR VISCHNG DURING THE TIME STEP (AS LONG AS
THE VALUE FOR MAXTHA FOR THE TIME STEP IS NOT NEAR ZERO. IF
THE VALUE FOR MAXTHA IS NEAR ZERO, USE ABSOLUTE CHANGE RATHER
THAN VISUAL CHANGE AS THE CONVERGENCE CRITERIA.)
USED INTERNALLY
TOL - VALUE TO USE IN DETERMINING CONVERGENCE (STEADY STATE PROBLEMS
ONLY). IF RATE OF VISUAL CHANGE IS LESS THAN TOL, THEN ASSUME
THAT THE PROGRAM HAS CONVERGED SUFFICIENTLY.
(I.E. MAXCH/DELT < TOL => CONVERGENCE BECAUSE RATE OF CHANGE
IS SUFFICIENTLY SMALL )
INPUT PARAMETER
LRRAT - THE GEOMETRY RATIO (LENGTH OF GAGE)/(RADIUS OF GAGE).
INPUT PARAMETER
GBIOT - THE TOP SURFACE BIOT NUMBER BEFORE THE DISTURBANCE.
INPUT PARAMETER
GBIOTB - THE BOTTOM SUKRFACE BIOT NUMBER BEFORE THE DISTRUBANCE.
INPUT PARAMETER
DBIOT - THE TOP SURFACE BIOT NUMBER AFTER THE DISTRUBANCE.
INPUT PARAMETER
DBIOTB - THE BOTTOM SURFACE BIOT NUMBER AFTER THE DISTURBANCE.
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INPUT PARAMETER
BIOT - TOP SURFACE BIOT NUMBER AT THE PARTICULAR TIME STEP.
USED INTERNALLY
BIOTB - BOTTOM SURFACE BIOT NUMBER AT THE PARTICULAR TIME STEP.
USED INTERNALLY
GENRAT - THE "GENERATION RATIO" (QGEN/DBIOT)/(TFFINAL - TINIT).
INPUT PARAMETER
BFRAT - THE RATIO (TFBACK - TINIT)/(TFFRONT - TINIT) WHERE TFBACK
AND TFFRONT ARE THE FLUID TEMPERATURES DURING THE
DISTURBANCE PROBLENM.
INPUT PARAMETER
DGBIRAT - THE RATIO (DBIOT)/(GBIOT).
USED INTERNALLY
RCGB - PROPERTY RATIO (RHO*CP)GAGE / (RHO*CP)MATERIAL B.

agcgoaoaoaoaoaoaoocnooaa

INPUT PARAMETER
KBG - PROPERTY RATIO (K)MATERIAL B / (K)GAGE.
INPUT PARAMETER
RCGGB - PROPERTY RATIO (RHO*CP)GAGE/(RHO*CP)WEIGHTED AVG GAGE AND B.
USED INTERNALLY
KGBG - PROPERTY RATIO (K)WEIGHTED AVG GAGE AND B / (K)GAGE.
USED INTERNALLY
DELR ~ SPACIAL STEP IN THE NON-DIMENSIONAL RADIAL DIRECTION.
USED INTERNALLY
DELZ - SPACIAL STEP IN THE NON-DIMENSIONAL Z DIRECTION.
USED INTERNALLY
DER - VALUE OF THE PARTIAL DERIVATIVE IN THE RADIAL DIRECTION
OF THE NON-DIMENSIONAL TEMPERATURE VARIABLE AT THE
OUTER BOUNDARY OF THE PROBLEM. USE A ONE-SIDED,
BACKWARD FINITE DIFFERENCE.
USED INTERNALLY
MAXDER - THE LARGEST VALUE FOR DER (IN ABSOLUTE VALUE) DURING
THE WHOLE RUN.
USED INTERNALLY
I - INDEX VARIABLE FOR NON-DIMENSIONAL RADIAL DIRECTION.
USED INTERNALLY
K - INDEX VARIABLE FOR NON-DIMENSIONAL Z DIRECTION.
USED INTERNALLY
N - INDEX VARIABLE FOR TIME STEPS.
USED INTERNALLY
RUNNUM - THE RUN NUMBER (USED FOR BOOK KEEPING PURPOSES).
INPUT VARIABLE
LAMR1,LAMZ1,LAMZ2,P1,P2,P3 - COMMON PRODUCT TERMS IN THE FINITE
ELEMENT EQUATIONS.
USED INTERNALLY

e e e e e e B e s s s e s s e e s s e e s e e e el s I s IR 9}
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c
‘ C DECLARE VARIABLES:
IMPLICIT CHARACTER(A-Z)
REAL THAOLD(0:40,0:40) ,THANEW(0:40,0:40)
REAL IGEN(0:20)
REAL DELT
INTEGER MAXT,TDIST,TIME1,COUNT
REAL MAXTHA,CHNG,VISCHNG,MAXCH,TOL
INTEGER IMAX,KMAX,IGENMX,IGAGE
REAL LRRAT
REAL BIOT,BIOTB,GBIOT,GBIOTB,DBIOT,DBIOTB
REAL DGBIRAT,GENRAT,BFRAT
REAL RCGB,KBG,RCGGB,KGBG
REAL DELR,DELZ,LAMR1,LAMZ1,LAMZ2,P1,P2,P3
REAL DER,MAXDER
REAL A1,A2,A3,A,B1,B,C1,C2,C3,C,D
REAL NUMER,DENOM
INTEGER RUNNUM
INTEGER I,K,N

INTEGER X,Y
c
C ------------------------------------------------------------------
. C OPEN INPUT/OUTPUT FILES.
c
OPEN(UNIT=1,FILE=’G4INP’ ,STATUS="0LD’)
OPEN(UNIT=2,FILE=’G40UT’ ,STATUS="NEW’)
OPEN(UNIT=3,FILE=’INIT’ ,STATUS=0LD’)
OPEN(UNIT=10,FILE="DISKT’ ,STATUS=’NEW’)
REWIND (UNIT=1)
REWIND(UNIT=3)
c
C --------------------------------------------------------------------
C READ INPUT PARAMETERS.
c
READ(1,#)
READ(1,#) DELT
READ(1,) MAXT
READ(1,*) TDIST
READ(1,) TOL
c

READ(1,*) IMAX
READ(1,%) KMAX
READ(1,#*) IGAGE
READ(1,*) IGENMX
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. READ(1,%) LRRAT

READ(1,s) GBIOT
READ(1,*) GBIOTB
READ(1,+) DBIOT
READ(1,#) DBIOTB
READ(1,*) GENRAT
READ(1,*) BFRAT
READ(1,*) DGBIRAT

c
READ(1,#*) RCGB
READ(1,*) KBG
C
READ(1,*) RUNNUM
c
(o e L D e et T T,

C INITIALIZE PARAMETER NEEDED IN PRINTING OUT HEADER ( USING HEADER
C INSTEAD OF JUST ECHOING THE INPUT ).

C
IF (TDIST .LE. 1 ) THEN
TIME1 = O
ELSEIF (TDIST .GT. MAXT) THEN
TIME1 = MAXT + 1
'l.’ ELSE
TIME1 = TDIST
ENDIF
C
(o et T R L TR L Rt
C PRINT HEADER.
c

WRITE(2,+*) ’RUN NUMBER = ’,RUNNUM
WRITE(2,+)’ INPUT VALUES:'
WRITE(2,%)
WRITE(2,%)’»* GEOMETRY OF THE GAGE AND FINITE ELEMENT MESH **°’
WRITE(2,*)
WRITE(2,*)’ GRID POINTS IN R-DIRECTION : O - ’,IMAX
WRITE(2,*)’ GRID POINTS IN Z-DIRECTION : O - ’,KMAX
WRITE(2,*)’ R-DIRECTION GRID POINTS INCLUDED’
WRITE(2,*)’ IN THE GAGE : 0 - ?,IGAGE
IF (IGENMX .LT. O) THEN
WRITE(2,*)’ R-DIRECTION GRID POINTS INCLUDED’
WRITE(2,*)’ 1IN THE HEAT GENERATING DISK : NONE’
ELSEIF (IGENMX .EQ. 0) THEN
WRITE(2,%)’ R-DIRECTION GRID POINT INCLUDED’
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. WRITE(2,*)’ IN THE HEAT GENERATING DISK : O
ELSE
WRITE(2,*)’ R-DIRECTION GRID POINTS INCLUDED’
WRITE(2,*)* 1IN THE HEAT GENERATING DISK : 0 - ?,IGENMX
ENDIF
WRITE(2,*)
WRITE(2,*)' RATIO OF (LENGTH OF GAGE)/(RADIUS OF GAGE) = ’,LRRAT
WRITE(2,*)
WRITE(2,*)
WRITE(2,*)’»*TIME STEP AND LIMITS INCLUDING EXTERNAL PARAMETERS*»’
WRITE(2,*)
WRITE(2,¢)* DELTA T = ’ DELT
WRITE(2,*)

WRITE(2,*)' MAXIMUM NUMBER OF TIME STEPS = ’ MAXT
WRITE(2,*)’ TOLERANCE FOR CONVERGENCE = ’,TOL
WRITE(2,*)
IF (TIME1 .EQ. 2) THEN
WRITE(2,#)’ TIME STEP ASSIGNED TO THE “START UP"™’
WRITE(2,#)’ PROBLEM ( NO EXTERNAL DISTURBANCE ) : 1’

WRITE(2,#)’ BIOT NUMBER AT THE TOP SURFACE = ’,GBIOT
WRITE(2,%)’ BIOT NUMBER AT THE BOTTOM SURFACE = ’,GBIOTB
WRITE(2,*)
WRITE(2,*)’ RATIO (RHO*CP)GAGE / (RHO*CP)MAT.B = ’,RCGB
. WRITE(2,%)’ RATIO (K)MAT.B / (K)GAGE = ’ ,KBG
ENDIF

IF (TIME1 .GT. 2) THEN
WRITE(2,*)’ TIME STEPS ASSIGNED TO THE "“START UP"’
WRITE(2,*)’ PROBLEM ( NO EXTERNAL DISTURBANCE ) : 1 - °,

& TIME1-1

WRITE(2,*)’ BIOT NUMBER AT THE TOP SURFACE = ’,GBIOT
WRITE(2,*)’ BIOT NUMBER AT THE BOTTOM SURFACE = ’,GBIOTB
WRITE(2,%)
WRITE(2,*)’ RATIO (RHO*CP)GAGE / (RHO*CP)MAT.B = ’,RCGB
WRITE(2,#)’ RATIO (K)MAT.B / (K)GAGE = ’,KBG

ENDIF

IF ((TIME1 .EQ. O).AND.(MAXT .GT. 1)) THEN
WRITE(2,%)
WRITE(2,s*)’ TIME STEPS ASSIGNED TO THE PROBLEM’
WRITE(2,*)’ WITH AN EXTERNAL DISTURBANCE : 1 - 7, MAXT
WRITE(2,*)’ BIOT NUMBER AT THE TOP SURFACE = ’,DBIOT
WRITE(2,%)’ BIOT NUMBER AT THE BOTTOM SURFACE = ’,DBIOTB
WRITE(2,*)’ RATIO (QGEN/DBIOT)/(TFFINAL - TI) = ’,GENRAT
WRITE(2,*)’ RATIO (TFBACK - TI)/(TFFRONT - TI) = ’,BFRAT
WRITE(2,%)’ RATIO (DBIOT)/(GBIOT) = ’,DGBIRAT
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WRITE(2,%)
‘ WRITE(2,%)’ RATIO (RHO*CP)GAGE / (RHO*CP)MAT.B = ’ RCGB

WRITE(2,%)’ RATIO (K)MAT.B / (K)GAGE = ’,KBG

ENDIF

IF ((TIME1 .EQ. O).AND.(MAXT .EQ. 1)) THEN
WRITE(2,*)
WRITE(2,*)’ TIME STEP ASSIGNED TO THE PROBLEM’
WRITE(2,#)’ WITH AN EXTERNAL DISTURBANCE : 1
WRITE(2,#)’ BIOT NUMBER AT THE TOP SURFACE = ’,DBIOT
WRITE(2,%)’ BIOT NUMBER AT THE BOTTOM SURFACE = ’,DBIOTB
WRITE(2,%)’ RATIO (QGEN/DBIOT)/(TFFINAL - TI) = ’,GENRAT
WRITE(2,#)’ RATIO (TFBACK - TI)/(TFFRONT - TI) = ’,BFRAT
WRITE(2,#*)’ RATIO (DBIOT)/(GBIOT) = ’,DGBIRAT
WRITE(2,*)
WRITE(2,*)’ RATIO (RHO*CP)GAGE / (RHO*CP)MAT.B = ',RCGB
WRITE(2,%)’ RATIO (K)MAT.B / (K)GAGE = ’,KBG

ENDIF

IF ((TIME1 .GT. O).AND.(TIME1 .EQ. MAXT)) THEN
WRITE(2,*)
WRITE(2,#)’ TIME STEP ASSIGNED TO THE PROBLEM’
WRITE(2,*)’ WITH AN EXTERNAL DISTURBANCE : ?,TIME1
WRITE(2,*)’ BIOT NUMBER AT THE TOP SURFACE = ’,DBIQT
WRITE(2,%)’ BIOT NUMBER AT THE BOTTOM SURFACE = ’,DBIOTB
WRITE(2,#)’ RATIO (QGEN/DBIOT)/(TFFINAL - TI) = !,GENRAT
WRITE(2,%)’ RATIO (TFBACK - TI)/(TFFRONT - TI) = ’,BFRAT
WRITE(2,*)’ RATIO (DBIDT)/(GBIOT) = ’,DGBIRAT
WRITE(2,*)
WRITE(2,*)’ RATIO (RHO*CP)GAGE / (RHO*CP)MAT.B = ’,RCGB
WRITE(2,#)’ RATIO (K)MAT.B / (K)GAGE = ’,KBG

ENDIF

IF ((TIME! .GT. O).AND.(TIME{ .LT. MAXT)) THEN
WRITE(2,*)
WRITE(2,*)’ TIME STEPS ASSIGNED TO THE PROBLEM’
WRITE(2,*)’ WITH AN EXTERNAL DISTURBANCE 2,

TIME1,® - * ,MAXT

WRITE(2,%*)’ BIOT NUMBER AT THE TOP SURFACE = ’,DBIOT
WRITE(2,*)’ BIOT NUMBER AT THE BOTTOM SURFACE = ’,DBIOTB
WRITE(2,%)’ RATIO (QGEN/DBIOT)/(TFFINAL - TI) = ’,GENRAT
WRITE(2,#)’ RATIO (TFBACK - TI)/(TFFRONT - TI) = ’,BFRAT
WRITE(2,%)’ RATIO (DBIOT)/(GBIOT) = ’,DGBIRAT
WRITE(2,*)
WRITE(2,#)’ RATIO (RHO#CP)GAGE / (RHO*CP)MAT.B = ’,RCGB
WRITE(2,%)’ RATIO (K)MAT.B / (K)GAGE = ’ ,KBG

ENDIF
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. WRITE(2,*)
WRITE(2,*)

WRITE(2,#*) 'RESULTS:’

WRITE(2,*)
c
c --------------------------------------------------------------------
C INITIALIZE ARRAYS AND OTHER PARAMETERS.
(o
READ(3,»)
DO 100 K = O,KMAX
DO 110 I = O,IMAX
THANEW(I,K) = 0.
READ(3,5) THAOLD(I,K)
IF (TIME1 .EQ. 0) THAOLD(I,K) = THAOLD(I,K)*GENRAT*DGBIRAT
110 CONTINUE
100 CONTINUE
C
DC 120 I = 0,IGAGE
IF (I .LE. IGENMX) THEN
IGEN(I) = 1.
ELSE
IGEN(I) = 0.
ENDIF
. 120 CONTINUE
o
DELR = 1./FLOAT(IGAGE)
DELZ = 1./FLOAT(KMAX)
C
LAMR1 = DELT/DELR##2
LAMZ1 = DELT/DELZ##2
LAMZ2 = DELT/DELZ
c
NUMER = 2.#RCGB*FLOAT(IGAGE)
DENOM = RCGB*(FLOAT(IGAGE) - .25) + (FLOAT(IGAGE) + .25)
RCGGB = NUMER/DENOM
c
NUMER = (FLOAT(IGAGE) - .25) + KBG*(FLOAT(IGAGE) + .25)
DENOM = 2.#FLOAT(IGAGE)
KGBG = NUMER/DENOM
C
Pi1 = (FLOAT(IMAX) - .5)/(FLOAT(IMAX) - .25)
P2 = 1. - 1./(2.%FLOAT(IGAGE))
P3 = 1. + 1./(2.#FLOAT(IGAGE))
C
C ..............................................................




C 250220 EASSRRERRBREREEBRR A AR AR R A A RER RSB SRSk ARk R RS

C ..............................................................
C MAIN LOOP.
c
IF (TIME1 .EQ. O) THEN
BIOT = DBIGT
BIOTB = DBIOTB
ELSE
BIOT = GBIOT
BIOTB = GBIOTB
ENDIF
COUNT = 0
MAXCH = 99.99
MAXDER = 0.
o
C ................................................................
DO 500 N = 1,MAXT
IF ((MAXCH/DELT) .GT. TOL) THEN
C ................................................................
c
c
C ---------------------------------------------------------
c REDEFINE BIOT NUMBERS AND UPDATE THAOLD WHEN STARTING
c THE DISTURBANCE PROBLEM.
c
IF (N .EQ. TIME1) THEN
BIOT = DBIOT
BIOTB = DBIOTB
DO 1000 I = 0,IMAX
DO 1010 K = 0,KMAX
THAOLD(I,K) = THAOLD(I,K)*GENRAT*DGBIRAT
1010 CONTINUE
1000 CONTINUE
ENDIF
C
C ................................................
o SOLVE FOR NEXT TIME STEP.
C
c
o FRONT OF GAGE
o
c
c
C )
c
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A = 4.+(LRRAT+#2)*LAMR1i* THAOLD(1,0)

‘ B = 2_.sLAMZis THAOLD(O,1)
Ci = 1. - 4.«(LRRAT*#2)¢LAMRY - 2.#LAMZ1 - 2.sLAMZ2+BIOT
C = Cix THAOLD(0,0)

IF (N .LT. TIME1) THEN
D = 2.sLAMZ2*BIOT* IGEN(0O)
ELSE
D = 2.%LAMZ2#BIOT*(1. + IGEN(O)*GENRAT)
ENDIF
THANEW(0,0) = A+ B+ C+ D

(2]

c 4:)]

DO 640 I = 1,IGAGE-1
Al = 1. - 1./(2.%FLOAT(I))
A2 = 1. + 1./(2.+#FLOAT(I))
A3 = (LRRAT#**2)xLAMR1
A = A3%( Als THAOLD(I-1,0) + A2* THAOLD(I+1,0) )
B = 2.*LAMZ1* THAOLD(I,1)
€1 = 1. - 2.«(LRRAT**2)*LAMR1 -~ 2.#LAMZ1 - 2.sLAMZ2sBIOT
C = Ci* THAOLD(I,O)
IF (N .LT. TIME1) THEN

. D = 2.+LAMZ2+BIOT* IGEN(I)
ELSE
D = 2.*LAMZ2+BIOT=*(1. + IGEN(I)*GENRAT)

ENDIF
THANEW(I,0) = A + B+ C + D

640 CONTINUE

©)

a0

A1 = RCGGB*(LRRAT**2)*LAMR1
A = A1»( P2% THAOLD(IGAGE-1,0) + P3«KBG#* THAOLD(IGAGE+1,0) )
B = 2.*RCGGB*KGBG*LAMZ1+ THAOLD(IGAGE,1)
C1 = - RCGGB*(LRRAT**2)*P2+LAMR1
C2 = - RCGGB*KBG*(LRRAT*#%2)*P3+LAMR1
C3 = - 2.%*RCGGB*KGBG*LAMZ1 - 2.%RCGGB*BIOT*LAMZ2
C= (1. + C1 + C2 + C3)* THAOLD(IGAGE,O)
IF (N .LT. TIME1) THEN
D = 2.*RCGGB+#BIOT*LAMZ2* IGEN(IGAGE)
ELSE
D = 2.#RCGGB#BIOT*LAMZ2#(1. + IGEN(IGAGE)*GENRAT)
ENDIF
THANEW(IGAGE,O) = A + B+ C + D
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‘I' g (D)

DO 660 I = IGAGE+1,IMAX-1
Al = 1. - 1./(2.¢FLOAT(I))
A2 = 1. + 1./(2.#FLOAT(I))
A3 = RCGB*KBG#(LRRAT*%2)*LAMR1
A = A3#( Als THAOLD(I-1,0) + A2+ THAOLD(I+1,0) )
B = 2.#RCGB*KBG#LAMZ1* THAOLD(I,1)
C1 = - 2.*RCGB*KBG#*(LRRAT#**2)*LAMR1

C2 = - 2.sRCGB*KBG*LAMZ1
C3 = - 2.*RCGB*BIOT+*LAMZ2
C= (3. + Ct + C2 + C3)x THAOLD(I,O)
IF (N .LT. TIME1) THEN
D=0.
ELSE
D = 2.*%*RCGB*BI0OT*LAMZ2
ENDIF
THANEW(I,0) = A + B +C + D
660 CONTINUE

(E)

O 00

A = 2.*RCGB*KBG* (LRRAT##*2)*P1*LAMR1* THAOLD(IMAX-1,0)
B = 2.*RCGB*KBG*LAMZ1# THAOLD(IMAX,1)
C1 = - 2.+*RCGB#KBG*(LRRAT*#2)*P1+LAMR1
C2 = - 2.*RCGB*KBG*LAMZ1
C3 = - 2.*RCGB*BIOT*LAMZ2
C= (1. + C1 + C2 + C3)* THAOLD(IMAX,O0)
IF (N .LT. TIME1) THEN

D = 0.
ELSE

D = 2.+#RCGB*BIOT*LAMZ2
ENDIF
THANEW(IMAX,0) = A + B+ C + D

INTERICR OF GAGE

QOO 0Oa0n

DO 700 K * 1,KMAX-1

a0

(F)
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’ A = 4.s(LRRAT#**2)+LAMR1* THAOLD(1,K)
B = LAMZ1*( THAOLD(O,K-1) + THAOLD(O,K+1) )
C1 = 1. - 4.«(LRRAT#*2)+LAMR1 - 2.sLAMZ1
C = Ci» THAOLD(O,K)
THANEW(0,K) = A + B + C

C
c ()]
c
DO 740 I = 1,IGAGE-1
Al = 1. - 1./(2.#FLOAT(I))
A2 = 1. + 1./(2.+FLOAT(I))
A3 = (LRRAT#*#2)*LAMR1
A = A3x( Al* THAOLD(I-1,K) + A2% THAOLD(I+1,K) )
B = LAMZ1*( THAOLD(I,X-1) + THAOLD(I,K+1) )
Ci = 1. - 2.«(LRRAT**2)*LAMR1 - 2.*LAMZ1
C = C1* THAOLD(I,K)
THANEW(I,K) = A + B + C
740 CONTINUE
C
o (H)
C

A1l = RCGGB*(LRRAT*#2)+LAMR1
’ A = A1*( P2+ THAOLD(IGAGE-1,K) + P3*KBG* THAOLD(IGAGE+1,K) )
B1 = RCGGB*KGBG*LAMZ1
B = B1#( THAOLD(IGAGE,K-1) + THAOLD(IGAGE,K+1) )
C1 = - RCGGB*(LRRAT*#2)*P2+LAMR1
C2 = - RCGGB*KBG*(LRRAT*#+2)*P3*LAMR1
C3 = - 2.+RCGGB*KGBG*LAMZ1
C= (1. + C1 + C2 + C3)* TRAOLD(IGAGE,K)
THANEW(IGAGE,K) = A + B + C

(¢}

(1)

DO 760 I = IGAGE+1,IMAX-1
A1 = 1. - 1./(2.#FLOAT(I))
A2 = 1. + 1./(2.+FLOAT(I))
A3 = RCGB*KBG#*(LRRAT#**2)*LAMR1
A = A3=( A1x THAOLD(I-1,K) + A2+ THAOLD(I+1,K) )
B1 = RCGB*KBG*LAMZ1
B = B1%( THAOLD(I,K-1) + THAOLD(I,K+1) )
C1 = - 2.*RCGB*KBG*(LRRAT**2)*LAMR1
C2 = ~ 2.*RCGB*KBG*LAMZ1
C = (1. + C1 + C2)* THAOLD(I,K)
THANEW(I,K) = A + B + C
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760 CONTINUE

(@)

OO0

A = 2. +#RCGB*KBG (LRRAT**2)*P1«LAMR1* THAOLD(IMAX-1,K)
Bl = RCGB#KBG#LAMZ1

B = Bis( THAOLD(IMAX,K-1) + THAOLD(IMAX,K+1) )

C1 = - 2, +#RCGB*KBG* (LRRAT*#2)*P1*LAMR1

C2 = - 2, +RCGB*KBG*LAMZ1

C= (1. + C1 + C2)* THAOLD(IMAX,K)

THANEW(IMAX,K) = A + B + C

700 CONTINUE

BACK OF GAGE

(x)

QOO0 0O0

A = 4.#(LRRAT**2)*LAMR1* THAOLD(1,KMAX)

B = 2.»LAMZ1* THAOLD(O,KMAX-1)
Cl1 = 1. - 4. «(LRRAT##2)*LAMR1 - 2.*LAMZ1 - 2.*LAMZ2+BIOTB
C = Ci1* THAOLD(O,KMAX)
IF (N .LT. TIME1) THEN
D =0.
ELSE
D = 2.4LAMZ2+BIOTB* BFRAT
ENDIF
THANEW(O,KMAX) = A + B+ C + D

Q

c L

DO 840 I = 1,IGAGE-1
Al = 1. - 1./(2.¢FLOAT(1))
A2 = 1, + 1./(2.#FLOAT(1))
A3 = (LRRAT**2)+LAMR1
A = A3+( A1ls THAOLD(I-1,KMAY) + A2¢ THAOLD(I+1,KMAX) )
B = 2.sLAMZ1* THAOLD(I,KMAX-1)
Ci = 1. - 2.#(LRRAT##2)*LAMR1 - 2.*LAMZ1 - 2.<LAMZ2+BIOTB
C = Ci% THAOLD(I,KMAX)
IF (N .LT. TIME1) THEN
D =0.
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ELSE
. D = 2.sLAMZ2+BIOTB+ BFRAT
ENDIF
THANEW(I,KMAX) = A + B + C + D
840 CONTINUE

M

OO0

A1 = RCGGB*(LRRAT#*%2)*P2«LAMR1
A2 = RCGGB*KBG* (LRRAT*#%2)«P3sLAMR1
A = Als THAOLD(IGAGE-1,KMAX) + A2+ THAOLD(IGAGE+1,KMAX)
B = 2.%RCGGB*KGBG*LAMZ1* THAOLD(IGAGE,KMAX-1)
C1 = - RCGGB*(LRRAT#*#2)+P2+«LAMR1
C2 = - RCGGB*KBG*(LRRAT**2)*P3+LAMR1
C3 = - 2.%RCGGB*KGBG*LAMZ1 - 2.*RCGGB*BIOTB+LAMZ2
C= (1. + C1 + C2 + C3)*x THAOLD(IGAGE,KMAX)
IF (N .LT. TIME1) THEN
D =0.
ELSE .
D = 2.*RCGGB*BIOTB*LAMZ2% BFRAT
ENDIF
THANEW(IGAGE,KMAX) = A + B+ C + D

c ¢ )
® ¢
DO 860 I = IGAGE+1,IMAX-1
Al = 1. - 1./(2.%FLOAT(I))

A2 = 1. + 1./(2.«FLOAT(I))

A3 = RCGB#KBG*(LRRAT#*#2)+LAMR1

A = A3+( A1* THAOLD(I-1,KMAX) + A2% THAOLD(I+1,KMAX) )
B = 2.+#RCGB*KBG*LAMZ1* THAOLD(I,KMAX-1)

C1 = - 2.%RCGB*KBG* (LRRAT**2)*LAMR1

C2 = - 2.*RCGB*KBG*LAMZ1

C3 = - 2.+«RCGB*«BIOTB*LAMZ2

C = (1. + C1 + C2 + C3)* THAOLD(I,KMAX)

IF (N .LT. TIME1) THEN

D =0.
ELSE
D = 2.sRCGB*BICTB*LAMZ2* BFRAT
ENDIF
THANEW(I,KMAX) = A + B + C + D
860 CONTINUE
c
c (0)
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1100

A = 2,%RCGB*KBG* (LRRAT#*2)*P1*LAMR1% THAOLD(IMAX~-1,KMAX)
B = 2.*RCGB*KBG*LAMZ1* THAOLD(IMAX,KMAX-1)
C1 = - 2 #RCGB*+KBG*(LRRAT**2)*P1#LAMR1
C2 = - 2.sRCGB*KBG*LAMZ1
C3 = - 2.#RCGB+*BIOTB*LAMZ2
C= (1. +C1 + C2 + C3)s THAOLD(IMAX,KMAX)
IF (N .LT. TIME1) THEN
D=0.
ELSE
D = 2.*RCGB+BIOTB*LAMZ2+ BFRAT
ENDIF
THANEW(IMAX,KMAX) = A + B+ C + D

- - . W T A e

WRITE NON-DIMENSIONAL TEMPERATURE VALUES AT THE HEATED DISK

TO FILE "DISKT" (DURING DISTURBANCE PROBLEM ONLY).

** MODIFIED TO WRITE TO "DISKT" ONLY AT INITIAL TIME STEP
OF DISTURBANCE PROBLEM AND AT TIME STEPS T+ = .001-.070
WITH DELT=.001 AFTER THE DISTURBANCE PROBLEM STARTS.

BE CAREFUL TO HAVE ENQUGH TIME STEPS TD HAVE ATLEAST
.070 IN NON-DIMENSIONAL TIME FOR THE DISTURBANCE (I.E.
NEED TO HAVE COUNT ATLEAST EQUAL TO 70 WHEN THE PROGRAM
FINISHES).

IF (N .GE. TIME1) THEN
IF ( (N.EQ.TIME1) .OR. ((TIME1.EQ.O).AND.(N.EQ.1)) ) THEN
COUNT = O
WRITE(10,25) COUNT
DO 1100 I = O,IGENMX
WRITE(10,30) I,THAOLD(I,O)

CONTINUE
ENDIF

X = N - MAX(TIME1,1) + 1

Y = NINT(.001/DELT)

IF ( MOD(X,Y) .EQ. O ) THEN
COUNT = COUNT + 1
WRITE(10,25) COUNT
DO 1125 I = O,IGENMX

WRITE(10,30) I,THANEW(I,O)
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ROLL DOWN THAOLD(1:20,1:20) AND FIND MAXIMUM VISUAL
PERCENT CHANGE. (BE CAREFUL NOT TO DIVIDE BY ZERO.)

OO0

MAXTHA = 0.
DO 900 I = O,IMAX
DO 810 K = O,KMAX
IF ( ABS(THANEW(I,K)) .GT. MAXTHA) THEN
MAXTHA = ABS(THANEW(I,K))

ENDIF
910 CONTINUE
900 CONTINUE
c

MAXCH = O.
DO 950 I = 0,IMAX
DO 960 K = 0,KMAX
CHNG = ABS( THANEW(I,K) - THAOLD(I,K) )
IF ( MAXTHA .GT. 1.E-15) THEN
VISCHNG = CHNG/MAXTHA
‘ IF (VISCHNG .GT. MAXCH) MAXCH = VISCHNG
ELSE
IF (CHNG .GT. MAXCH) MAXCH = CHNG

ENDIF

THAOLD(I,K) = THANEW(I,K)
960 CONTINUE
950 CONTINUE
C
C .....................................................
c FIND MAXIMUM RADIAL DIRECTION DERIVATIVE AT OUTER
c BOUNDARY OF THE PROBLEM. SAVE THE MAXIMUM VALUE
C FROM THE WHOLE RUN (ALL ITERATIONS INCLUDED) TO
c PRINT OUT WHEN FINISHED WITH THE MAIN LOOP.
C

DO 1200 K = 0,KMAX
DER = (THANEW(IMAX,K) - THANEW(IMAX-1,X))/DELR
IF (ABS(DER) .GT. ABS(MAXDER)) MAXDER = DER

1200 CONTINUE
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c
c CONVERGES. JUMP OUT OF LOOP.
c

WRITE(2,*)
WRITE(2,*) *CONVERGES AFTER ’,N-1,’ ITERATIONS.’
WRITE(2,*) 'MAXIMUM CHANGE ON THE LAST ITERATION WAS ’,MAXCH,’.’

GOTO 2000
c
C ~mcecmccccceccemecccmmmmmeccmce—mcecsesccccccccecmcem—mecac———————
ENDIF
500 CONTINUE
C =-—-—c--eccemeeccmceemmmmsememmcmceceeecmscceccccecemoece—sccccmc==
C
c IF YOU EXECUTE THESE STATEMENTS, THEN YOU COMPLETED THE
c MAXIMUM NUMBER OF ITERATIONS FOR THE LOOP WITHOUT CONVERGING.
C PRINT MESSAGE IF EXPECTING SOME CONVERGENCE (I.E. TOL > 0).
C

IF (TOL .GT. 0.) THEN
WRITE(2,%)
WRITE(2,#*)’QUITS WITHOUT CONVERGING AFTER ’,N-1,’ ITERATIONS.’
WRITE(2,#) 'MAXIMUM CHANGE ON THE LAST ITERATION WAS ’,MAXCH,’.’
ENDIF

C PRINT VALUE OF RADIAL DIRECTION DERIVATIVE AT OUTER BOUNDARY THAT
C WAS THE LARGEST (IN ABSOLUTE VALUE) DURING THE RUN.
c

WRITE(2,*)
WRITE(2,*) 'MAXIMUM RADIAL DIRECTION DERIVATIVE AT OUTER BOUNDARY’
WRITE(2,*)'DURING THE RUN WAS ’ ,MAXDER,’.’

C
(o et L D DL b e el il D L Dt Dbt
C PRINT CHECK ON VALUE OF COUNT.
C
IF (COQUNT .LT. 70) THEN
WRITE(2,*)
WRITE(2,*) ’WARNING: COUNT LESS THAN 70. COUNT = ’,COUNT
WRITE(2,*)
ELSE
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WRITE(2,%)

WRITE(2,+)’VALUE OF COUNT IS ' ,COUNT
WRITE(2, )
WRITE(2,%)

ENDIF

<.--~-------—-—---—-----------------u---——----—------~----—---- ------

FORMAT STATEMENTS.
FORMAT (20X,E17.10)
FORMAT(IS)
FORMAT(IS,5X,E17.10)

END
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. D.8 Code to Compare the Finite-Difference and the Series Solution Estimates for

Surface Heat Fluz
PROGRAM HTTR2M

o T T T T T T I,
C =* 2LT JOSEPH A. BONAFEDE, GA-88M *
C = FALL 1987 *
C = *
C = ADVISOR: DR. JAMES E. HITCHCOCK *
o T 1T T2 T T e P Lt LTI I
C
C DRIVER FOR SUBROUTINE GETQ.
C GETS INPUTS FOR CALL TO SUBROUTINE GETQ FROM THE INPUT FILE TO
C GAGE2, 1.E. "G2INP" . OPENS THE OUTPUT FILE FOR GETQ WHICH IS
C ALSO THE OUTPUT FILE FOR GAGE2, I.E. "G20UT" (UNIT=2).
C OPENS THE INPUT FILE FOR GETQ, I.E. "DISKT"” (UNIT=10).
C OPENS THE OUTPUT DATA FILES "PTVDF" (UNIT=11), "PTPDF" (UNIT=12),
C "PTSER" (UNIT=13), AND "PTFD" (UNIT=14).
o
C *x MODIFIED TO WORK WITH PROGRAMS GAGE2M OR GAGE2N AND
C =*x SENDS VALUE OF 70 FOR COUNT AND .001 FOR DELT ALWAYS.
C
C --------------------------------------------------------------
. C DECLARE VARIABLES.
C
IMPLICIT CHARACTER(A-Z)
INTEGER IGENMX,COUNT
REAL DBIOT,DELT,GENRAT
INTEGER MAXT,TDIST
C
c ---------------------------------------------------------------
C OPEN INPUT AND QUTPUT FILES.
C
OPEN(UNIT=1,FILE='G2INP’ ,STATUS=’0LD’)
OPEN(UNIT=2,FILE=’G20UT’ ,STATUS=’0LD’)
OPEN(UNIT=10,FILE='DISKT’ ,STATUS=’0LD’)
OPEN(UNIT=11,FILE="PTVDF’ ,STATUS='NEW’)
OPEN(UNIT=12,FILE="PTPDF’ ,STATUS='NEW’)
OPEN(UNIT=13,FILE="PTSER’ ,STATUS='NEW’)
OPEN(UNIT=14,FILE="PTFD’ ,STATUS=’NEW’)
REWIND(UNIT=1)
(of
C ---------------------------------------------------------------
C GET INPUTS TO SUBROUTINE.
C
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QO Q

OO0 0000

READ(1,#)
READ(1,#)
READ(1,#*) MAXT
READ(1,*) TDIST
READ(1,s)
READ(1,+)
READ(1,#)
READ(1,*) IGENMX

READ(1,*)
READ(1,*)
READ(1,*)
READ(1,+) DBIOT
READ(1,*)
READ(1,%*) GENRAT

IF (TDIST .GT. MAXT) THEN
WRITE(2,%)
WRITE(2,*) 'PROBLEM: TDIST GREATER THAN MAXT. THIS WAS NOT’
WRITE(2,*)’A DISTURBANCE PROBLEM.’
STOP
ENDIF

DELT = .001
COUNT = 70

- - - - - S = W Y = VR T e AR e T R e R SR A -

CALL SUBROUTINE.
CALL GETQ ( COUNT,IGENMX,DBIOT,DELT,GENRAT )

END
AR KERRR AR KRB R R R R KRR KRRk Rk Rk KRRk kR Rk Rk k ko

T T T T s T
SUBROUTINE GETQ ( NUMT,IMX,BIOT,DELT,GENRAT )

RRRS AR E R Rk kR R Rk kg ko kR Rk k ko kR kk kR ko kR kok k&

* 2LT JOSEPH A. BONAFEDE, GA-88M *
* FALL 1987 *
* *
* ADVISOR: DR. JAMES E. HITCHCOCK *

SR kB RREER R R REE R KRR KRR R KRRk kR kR kk Rk k

THIS SUBROUTINE DETERMINES THE NON-DIMENSIONAL HEAT
TRANSFER RATE AT THE HEATED DISK FOR BOTH THE SERIES
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SOLUTION AND THE FINITE DIFFERENCE SOLUTION.

THE SUBROUTINE COMPARES THE DIFFERENT VALUES AND PRINTS
THE RESULTS IN THE FILE "G20UT" (UNIT=2).

DATA NEEDED TO DETERMINE THE NON-DIMENSIONAL HEAT TRANSFER
RATES IS STORED IN THE FILE "DISKT" (UNIT=10).

GLOSSARY OF MAIN VARIABLES:

NUMT - THE NUMBER OF SURFACE HEAT TRANSFER VALUES TO CALCULATE.
INPUT

IMX - THE MAXIMUM VALUE FOR RADIAL NODE INCLUDED IN THE DISK,
I.E. IGENMX. (NODES I=0,IMX ARE INCLUDED IN THE DISK.)
INPUT

BIOT - THE SURFACE BIOT NUMBER FOR THE DISTURBANCE PROBLEM.
INPUT

DELT - THE NON-DIMENSIONAL TIME STEP USED IN THE PROGRAM.
INPUT
GENRAT - THE NON-DIMENSIONAL RATIO (QG/DBIOT)/(TFFINAL - TI)
USED IN THE PROGRAM
INPUT
THANOW - MATRIX STORING THE VALUES FOR THATA(I) AT TIME = J
FOR I=0,IMX.
USED INTERNALLY
THAPRE - MATRIX STORING THE VALUES FOR THATA(I) AT TIME T = J-1
FOR I=0,IMX.
USED INTERNALLY
SUM - MATRIX WHICH STORES THE VALUES (THANOW(I)-THAPRE(I))/B
FOR I=0,IMX. B IS A FUNTION OF TIME T (TIME OF THE SURFACE
HEAT TRANSFER VALUE) AND TIME J (TIME ASSNCIATED WITH THANOW).
USED INTERNALLY
B - THE DENOMINATOR TERM INSIDE THE SERIES FOR THE SERIES SOLUTION.
B IS A FUNCTION OF TIME T (TIME OF THE SURFACE HEAT TRANSFER
VALUE) AND TIME J (TIME ASSOCIATED WITH THANOW).
USED INTERNALLY
CONS - THE CONSTANT TERM IN THE SERIES SOLUTION.
USED INTERNALLY
CONFD - THE CONSTANT TERM IN THE FINITE DIFFERENCE SOLUTION.
USED INTERNALLY
XS - VARIABLE USED FOR AN INTERMEDIATE RESULT IN THE SERIES SOLUTION.
USED INTERNALLY
XFD - VARIABLE USED FOR AN INTERMEDIATE RESULT IN THE FINITE
DIFFERENCE SOLUTION.
USED INTERNALLY
QS - THE FINAL VALUE FOR AVERAGE SURFACE HEAT TRANSFER AT THE DISK
FOR THE SERIES SOLUTION.
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USED INTERNALLY
QFD - THE FINAL VALUE FOR AVERAGE SURFACE HEAT TRANSFER AT THE DISK
FOR THE FINITE DIFFERENCE SOLUTION.
USED INTERNALLY
VISDIFF - THE PERCENT OF THE FULL SCALE VALUE (MAX THEORETICAL VALUE
FOR SURFACE HEAT TRANSFER) BY WHICH THE RESULTS FOR
AVERAGE SURFACE HEAT TRANSFER AT THE DISK DIFFER.
(FULL SCALE = 1. + GENRAT).
USED INTERNALLY
PERDIFF - THE PERCENT DIFFERENCE BETWEEN THE RESULTS FOR AVERAGE
SURFACE HEAT TRANSFER AT THE DISK (USING THE FINITE
DIFFERENCE VALUE IN THE DENOMINATOR) .
USED INTERNALLY
T - INDEX DENOTING THE TIME STEP FOR WHICH WE ARE CURRENTLY
CALCULATING THE SURFACE HEAT TRANSFER.
USED INTERNALLY
J - INDEX DENOTING THE TIME STEP INSIDE THE SERIES (ASSOCIATED
WITH THANOW).
USED INTERNALLY
I - INDEX DENOTING THE RADIAL NODE (I=0,IMX).

USED INTERNALLY

PI - THE CONSTANT PI (3.141 ...)

USED INTERNALLY

DECLARE VARIABLES:
IMPLICIT CHARACTER(A-Z)
INTEGER NUMT, IMX
REAL BIOT,DELT,GENRAT
REAL SUM(1:100) ,THAPRE(1:100),THANOW(1:100)
REAL PI,CONS,CONFD
REAL B,XS,XFD,QS,QFD
REAL VISDIFF,PERDIFF
INTEGER T,I,J

- > A - = Y . = e e s S e . -

GET PARAMETERS.

PI = 4.#ATAN(1.)
CONS = 2./(BIOT*SQRT(DELT#PI)*((FLOAT(IMX) + .5)%%2))
CONFD = 1./((FLOAT(IMX) + .5)*%2)

- - A > O S e = = - T = e e D T = R AR TR e G wn MR Em M W W S R e W A e e

PRINT HEADER TO "G20UT" (UNIT 2).

WRITE(2,50)




[ T g g
’ C GET RESULTS FOR EACH TIME T.
C
DO S00 T = 1,NUMT
c
REWIND (UNIT=10)
c
o /*READ VALUES AT TIME ZERO.s*/
c
READ(10,%)
DO 600 I = 0,IMX
READ(10,25) THAPRE(I)
600 CONTINUE
C
C /*GET SUM(I) FROM J=1,T-1 FOR ALL I*/
o
DO 700 I = 0,IMX
SUM(I) = 0.
700 CONTINUE
Do 800 J = 1,T-1
B = SQRT(FLOAT(T-J)) + SQRT(FLOAT(T-J+1))
READ(10,*)
DO 850 I = 0,IMX
‘ READ(10,25) THANQW(I)
SUM(I) = SUM(I) + (THANOW(I) - THAPRE(I))/B
THAPRE(I) = THANOW(I)
850 CONTINUE
800 CONTINUE
o
c /+GET FINAL VALUE OF SUM(I) FOR EACH I (INCLUDES TERM FOR#*/
C /* J=T). ALSO, GET FINAL VALUES FOR QS AND QFD. %/
o
Qs = 0.
QFD = 0.
READ(10,%)

DO %00 I = 0,IMX
READ(10,25) THANOW(I)
SUM(I) = SUM(I) + (THANOW(I) - THAPRE(I))
IF (I .EQ. 0) THEN
XS = .25%SUM(I)
XFD = .25#(1. - THANOW(I))
ELSE
XS = 2.#FLOAT(1)#SUM(I)
XFD = 2.¢FLOAT(I)*(1. - THANOW(I))
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ENDIF
QS = Qs + XS
QFD = QFD + XFD
900 CONTINUE
QS = QS * CONS
QFD = QFD * CONFD

/*COMPARE QS AND QFD AND PRINT RESULTS TO "G20UT" (UNIT 2)#*/
/*AND "PTDIFF" (UNIT 11) */

aoan

IF ( ABS(QFD) .GT. 1E-15 ) THEN
VISDIFF = ((QS - QFD)*100.)/(1. + GENRAT)
PERDIFF = ((QS - QFD)#100.}/ABS(QFD)
WRITE(2,60) DELT*FLOAT(T),QS,QFD,VISDIFF,PERDIFF
WRITE(11,80) DELT*FLOAT(T),VISDIFF
WRITE(12,80) DELT*FLOAT(T) ,PERDIFF
WRITE(13,80) DELT*FLOAT(T),QS
WRITE(14,80) DELT*FLOAT(T),QFD

ELSE
VISDIFF = ((QS - QFD)*100.)/(1. + GENRAT)
WRITE(2,70) DELT*FLOAT(T),QS,QFD,VISDIFF
WRITE(11,80) DELT*FLOAT(T),VISDIFF
WRITE(12,85) DELT*FLOAT(T)
WRITE(13,80) DELT*FLOAT(T),QS
WRITE(14,80) DELT#FLOAT(T),QFD

ENDIF

500 CONTINUE

C  FORMAT STATEMENTS.

25 FORMAT (10X ,E17.10)
50 FORMAT(’NON-DIM. TIME’,T21,'HEAT TRANSFER’,T41,’HEAT TRANSFER’/

4 ' (AFTER DISTURBANCE)’',T21,’(SERIES SOLUTION)®,T41,
4 *(FINITE DIFF SOLU)’,T61,’VISUAL DIFFERENCE’,T81,
& 'PERCENT DIFFERENCE’)

60 FORMAT(F10.7,10X,4(E17.10,3X),’%?)

70 FORMAT(F10.7,10X,3(E17.10,3X),’ NOT COMPARED’)
80 FORMAT(F10.7,5X,E17.10)

85 FORMAT(F10.7,5X,* NOT COMPARED’)

RETURN
END
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